满分5 > 高中数学试题 >

已知对任意的x>0恒有a1nx≤b(x-1)成立. (1)求正数a与b的关系; ...

已知对任意的x>0恒有a1nx≤b(x-1)成立.
(1)求正数a与b的关系;
(2)若a=1,设f(x)=mmanfen5.com 满分网+n,(m,n∈R),若1nx≤f(x)≤b(x-1)对∀x>0恒成立,求函数f(x)的解析式;
(3)证明:1n(n!)>2n-4manfen5.com 满分网(n∈N,n≥2)
(1)由条件构造函数,进而把不等式问题转化为函数的最值问题,求导,从而得到a与b的关系; (2)待定系数法求函数的解析式,注意不等式中等号成立的条件,是解答此题的关键; (3)借助于(2)的结论来证明(3),利用放缩法达到证明不等式的目的. 【解析】 (1)设f(x)=alnx-b(x-1), 易知f(1)=0,由已知f(x)≤0恒成立, 所以函数f(x)在x=1处取得最大值.∴f'(1)=0,∴a=b 又∵a>0,∴f(x)在x=1处取得极大值,符合题意, 即关系式为a=b.(3分) (2)∵a=1,∴b=1∴恒成立, 令x=1,有0≤m+n≤0,∴m+n=0(5分)∴, 即对∀x>0恒成立,∴须1-m=-1,即m=2∴函数(7分) (3)由(2)知:(9分) ∴= 即(12分)
复制答案
考点分析:
相关试题推荐
已知定义在正实数集上的函数f(x)=x2+4ax+1,g(x)=6a2lnx+2b+1,其中a>0.
(Ⅰ)设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,用a表示b,并求b的最大值;
(Ⅱ)设h(x)=f(x)+g(x),证明:若manfen5.com 满分网,则对任意x1,x2∈(0,+∞),x1≠x2manfen5.com 满分网
查看答案
已知函数f(x)=(x2+ax+a)e-x,(a为常数,e为自然对数的底).
(Ⅰ)若函数f(x)在x=0时取得极小值,试确定a的取值范围;
(Ⅱ)在(Ⅰ)的条件下,设由f(x)的极大值构成的函数为g(x),试判断曲线g(x)只可能与直线2x-3y+m=0、3x-2y+n=0(m,n为确定的常数)中的哪一条相切,并说明理由.
查看答案
已知函数f(x)=x-ln(x+a).(a是常数)
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当y=f(x)在x=1处取得极值时,若关于x的方程f(x)+2x=x2+b在[0.5,2]上恰有两个不相等的实数根,求实数b的取值范围;
(Ⅲ)求证:当n≥2,n∈N+manfen5.com 满分网
查看答案
设函数f(x)=x2-2(-1)klnx(k∈N+).
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)设函数manfen5.com 满分网在(0,1]上是增函数,且对于(0,1]内的任意实数x1,x2当k为偶数时,恒有f(x1)≥g(x2)成立,求实数b的取值范围;
(Ⅲ)当k是偶数时,函数manfen5.com 满分网,求证:[h(x)]n+2≥h(xn)+2n(n∈N+).
查看答案
已知对任意m∈R,直线x+y+m=0都不是f(x)=x3-3ax(a∈R)的切线.
(I)求a的取值范围;
(II)求证在x∈[-1,1]上至少存在一个x,使得manfen5.com 满分网成立.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.