已知函数f(x)=
x
2+2ax,g(x)=3a
2lnx+b.其中a,b∈R.
(1)设两曲线y=f(x)与y=g(x)有公共点,且在公共点处的切线相同,若a>0,试建立b关于a的函数关系式;
(2)在(1)的条件下求b的最大值;
(3)若b=0时,函数h(x)=f(x)+g(x)-(2a+6)x在(0,4)上为单调函数,求a的取值范围.
考点分析:
相关试题推荐
已知函数f(x)=ln
2(1+x)+2ln(1+x)-2x.
(I)证明函数f(x)在区间(0,1)上单调递减;
(II)若不等式
≤e
2对任意的n∈N
*都成立,(其中e是自然对数的底数),求实数a的最大值.
查看答案
已知对任意的x>0恒有a1nx≤b(x-1)成立.
(1)求正数a与b的关系;
(2)若a=1,设f(x)=m
+n,(m,n∈R),若1nx≤f(x)≤b(x-1)对∀x>0恒成立,求函数f(x)的解析式;
(3)证明:1n(n!)>2n-4
(n∈N,n≥2)
查看答案
已知定义在正实数集上的函数f(x)=x
2+4ax+1,g(x)=6a
2lnx+2b+1,其中a>0.
(Ⅰ)设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,用a表示b,并求b的最大值;
(Ⅱ)设h(x)=f(x)+g(x),证明:若
,则对任意x
1,x
2∈(0,+∞),x
1≠x
2有
.
查看答案
已知函数f(x)=(x
2+ax+a)e
-x,(a为常数,e为自然对数的底).
(Ⅰ)若函数f(x)在x=0时取得极小值,试确定a的取值范围;
(Ⅱ)在(Ⅰ)的条件下,设由f(x)的极大值构成的函数为g(x),试判断曲线g(x)只可能与直线2x-3y+m=0、3x-2y+n=0(m,n为确定的常数)中的哪一条相切,并说明理由.
查看答案
已知函数f(x)=x-ln(x+a).(a是常数)
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当y=f(x)在x=1处取得极值时,若关于x的方程f(x)+2x=x
2+b在[0.5,2]上恰有两个不相等的实数根,求实数b的取值范围;
(Ⅲ)求证:当n≥2,n∈N
+时
.
查看答案