满分5 > 高中数学试题 >

设f:x→x2是从集合A到集合B的映射,如果B={1,2},则A∩B为( ) A...

设f:x→x2是从集合A到集合B的映射,如果B={1,2},则A∩B为( )
A.∅
B.{1}
C.∅或{2}
D.∅或{1}
根据映射的定义,先求出集合A中的像,再求A∩B. 【解析】 由已知x2=1或x2=2, 解之得,x=±1或x=±. 若1∈A,则A∩B={1}, 若1∉A,则A∩B=∅. 故A∩B=∅或{1}, 故选D.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)若函数f(x)在定义域内单调递增,求a的取值范围;
(2)若manfen5.com 满分网且关于x的方程manfen5.com 满分网在[1,4]上恰有两个不相等的实数根,求实数b的取值范围;
(3)设各项为正的数列{an}满足:a1=1,an+1=lnan+an+2,n∈N*用数学归纳法证明:an≤2n-1
查看答案
定义:F(x,y)=xy+lnx,x∈(0,+∞),y∈R,f(x)=manfen5.com 满分网(其中a≠0).
(1)求 f(x) 的单调区间;
(2)若manfen5.com 满分网恒成立,试求实数a的取值范围;
(3)记f′(x)为f(x)的导数,当a=1时,对任意的n∈N*,在区间[1,f′(n)]上总存在k个正数a1,a2,a3,…,a4,使manfen5.com 满分网成立,试求k的最小值.
查看答案
已知函数f(x)=-a2x2+ax+lnx(a∈R).
(Ⅰ)我们称使f(x)=0成立的x为函数的零点.证明:当a=1时,函数f(x)只有一个零点;
(Ⅱ)若函数f(x)在区间(1,+∞)上是减函数,求实数a的取值范围.
查看答案
已知函数f(x)满足2f(x+2)-f(x)=0,当x∈(0,2)时,f(x)=lnx+axmanfen5.com 满分网,当x∈(-4,-2)时,f(x)的最大值为-4.
(I)求实数a的值;
(II)设b≠0,函数manfen5.com 满分网,x∈(1,2).若对任意的x1∈(1,2),总存在x2∈(1,2),使f(x1)-g(x2)=0,求实数b的取值范围.
查看答案
已知a∈R,函数f(x)=x2-2alnx(其中x≥1),当a≤1时,求f(x)的单调区间和最值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.