满分5 > 高中数学试题 >

设函数,其中a为实数. (1)已知函数f(x)在x=1处取得极值,求a的值; (...

设函数manfen5.com 满分网,其中a为实数.
(1)已知函数f(x)在x=1处取得极值,求a的值;
(2)已知不等式f′(x)>x2-x-a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.
(1)求出f′(x),因为函数在x=1时取极值,得到f′(1)=0,代入求出a值即可; (2)把f(x)的解析式代入到不等式中,化简得到,因为a>0,不等式恒成立即要,求出x的解集即可. 【解析】 (1)f′(x)=ax2-3x+(a+1) 由于函数f(x)在x=1时取得极值, 所以f′(1)=0 即a-3+a+1=0,∴a=1 (2)由题设知:ax2-3x+(a+1)>x2-x-a+1 对任意a∈(0,+∞)都成立 即a(x2+2)-x2-2x>0 对任意a∈(0,+∞)都成立 于是对任意a∈(0,+∞)都成立, 即∴-2≤x≤0 于是x的取值范围是{x|-2≤x≤0}.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网(m>0,m≠1)的图象恒通过定点(a,b).设椭圆E的方程为manfen5.com 满分网(a>b>0).
(1)求椭圆E的方程.
(2)若动点T(t,0)在椭圆E长轴上移动,点T关于直线manfen5.com 满分网的对称点为S(m,n),求manfen5.com 满分网的取值范围.
查看答案
如图,已知长方体ABCD-A1B1C1D1的底面ABCD为正方形,E为线段AD1的中点,F为线段BD1的中点.
(1)求证:EF∥平面ABCD;
(2)设M为线段C1C的中点,当manfen5.com 满分网的比值为多少时,DF⊥平面D1MB,
并说明理由.

manfen5.com 满分网 查看答案
已知集合A=[2,log2t],集合B={x|x2-8x+12≤0},x,t∈R,且A⊆B.
(1)对于区间[a,b],定义此区间的“长度”为b-a,若A的区间“长度”为1,试求t的值.
(2)某个函数f(x)的值域是B,且f(x)∈A的概率不小于manfen5.com 满分网,试确定t的取值范围.
查看答案
已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网

(1)求角A的值;

(2)若a=manfen5.com 满分网,b+c=4,求△ABC的面积.
查看答案
manfen5.com 满分网如图⊙0的直径AD=2,四边形ABCD内接于⊙0,直线MN切⊙0于点B,∠MBA=30°,则AB的长为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.