满分5 > 高中数学试题 >

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点. (Ⅰ)求...

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.
(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.
(Ⅰ)先求导,再由x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点即求解. (Ⅱ)由(Ⅰ)确定f(x)=16ln(1+x)+x2-10x,x∈(-1,+∞)再由f′(x)>0和f′(x)<0求得单调区间. (Ⅲ)由(Ⅱ)知,f(x)在(-1,1)内单调增加,在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0,可得f(x)的极大值为f(1),极小值为f(3)一,再由直线y=b与函数y=f(x)的图象有3个交点则须有f(3)<b<f(1)求解,因此,b的取值范围为(32ln2-21,16ln2-9). 【解析】 (Ⅰ)因为 所以 因此a=16 (Ⅱ)由(Ⅰ)知,f(x)=16ln(1+x)+x2-10x,x∈(-1,+∞) 当x∈(-1,1)∪(3,+∞)时,f′(x)>0 当x∈(1,3)时,f′(x)<0 所以f(x)的单调增区间是(-1,1),(3,+∞)f(x)的单调减区间是(1,3) (Ⅲ)由(Ⅱ)知,f(x)在(-1,1)内单调增加, 在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0 所以f(x)的极大值为f(1)=16ln2-9,极小值为f(3)=32ln2-21 因此f(16)=162-10×16>16ln2-9=f(1)f(e-2-1)<-32+11=-21<f(3) 所以在f(x)的三个单调区间(-1,1),(1,3),(3,+∞)直线y=b有y=f(x)的图象各有一个交点,当且仅当f(3)<b<f(1) 因此,b的取值范围为(32ln2-21,16ln2-9).
复制答案
考点分析:
相关试题推荐
某种产品每件成本为6元,每件售价为x元(x>6),年销量为u万件,若已知manfen5.com 满分网manfen5.com 满分网成正比,且售价为10元时,年销量为28万件.
(1)求年销售利润y关于x的函数关系式.
(2)求售价为多少时,年利润最大,并求出最大年利润.
查看答案
设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)<0;f(1)=-2.
(1)证明f(x)是奇函数;
(2)证明f(x)在R上是减函数;
(3)求f(x)在区间[-3,3]上的最大值和最小值.
查看答案
已知函数manfen5.com 满分网是奇函数,且manfen5.com 满分网
(Ⅰ)求实数m和n的值;
(Ⅱ)判断函数f(x)在(-∞,-1]上的单调性,并加以证明.
查看答案
设全集为R,集合manfen5.com 满分网,集合B={a∈R|关于x的方程x2+ax+1=0的根一个在(0,1)内,另一个在(1,2)内}.求(CRA)∩(CRB).
查看答案
记关于x的不等式manfen5.com 满分网的解集为P,不等式|x-1|≤3的解集为Q.
(1)若a=3,求P.
(2)若P⊆Q,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.