满分5 > 高中数学试题 >

设函数f(x)=(x+1)ln(x+1).若对所有的x≥0,都有f(x)≥ax成...

设函数f(x)=(x+1)ln(x+1).若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围.
令g(x)=(x+1)ln(x+1)-ax对g(x),求导得g'(x)=ln(x+1)+1-a,令g'(x)=0⇒x=ea-1-1, 当a≤1时,对所有的x>0都有g'(x)>0,所以g(x)在[0,+∞)上为单调增函数,又g(0)=0,所以对x≥0时有g(x)≥g(0),即当a≤1时都有f(x)≥ax,所以a≤1成立,当a>1时,对于0<x<ea-1-1时,g'(x)<0,所以g(x)在(0,ea-1-1)上是减函数,又g(0)=0,所以对于0<x<ea-1-1有g(x)<g(0),即f(x)<ax,所以当a>1时f(x)≥ax不一定成立 综上所述即可得出a的取值范围. 解法一: 令g(x)=(x+1)ln(x+1)-ax, 对函数g(x)求导数:g′(x)=ln(x+1)+1-a 令g′(x)=0,解得x=ea-1-1, (i)当a≤1时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函数, 又g(0)=0,所以对x≥0,都有g(x)≥g(0), 即当a≤1时,对于所有x≥0,都有f(x)≥ax. (ii)当a>1时,对于0<x<ea-1-1,g′(x)<0,所以g(x)在(0,ea-1-1)是减函数, 又g(0)=0,所以对0<x<ea-1-1,都有g(x)<g(0), 即当a>1时,不是对所有的x≥0,都有f(x)≥ax成立. 综上,a的取值范围是(-∞,1]. 解法二: 令g(x)=(x+1)ln(x+1)-ax, 于是不等式f(x)≥ax成立即为g(x)≥g(0)成立. 对函数g(x)求导数:g′(x)=ln(x+1)+1-a 令g′(x)=0,解得x=ea-1-1, 当x>ea-1-1时,g′(x)>0,g(x)为增函数, 当-1<x<ea-1-1,g′(x)<0,g(x)为减函数, 所以要对所有x≥0都有g(x)≥g(0)充要条件为ea-1-1≤0. 由此得a≤1,即a的取值范围是(-∞,1].
复制答案
考点分析:
相关试题推荐
如图,在直三棱柱ABC-A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点.
(I)证明:ED为异面直线BB1与AC1的公垂线;
(II)设manfen5.com 满分网,求二面角A1-AD-C1的大小.

manfen5.com 满分网 查看答案
某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.
(1)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望;
(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)若manfen5.com 满分网,求θ;
(2)求manfen5.com 满分网的最大值.
查看答案
一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出    人.
manfen5.com 满分网 查看答案
过点manfen5.com 满分网的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.