登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
证明 cos(α+β)cos(α-β)=cos2α-sin2β
证明 cos(α+β)cos(α-β)=cos
2
α-sin
2
β
利用两角和公式对等式左边进行展开,化简整理=(cosαcosβ)2-(sinαsinβ)2,进而利用同角三角函数基本关系,进一步化简整理证明原式. 证明:cos(α+β)cos(α-β)=(cosαcosβ-sinαsinβ)•(cosαcosβ+sinαsinβ) =(cosαcosβ)2-(sinαsinβ)2 =(cosα)2[1-(sinβ)2]-(sinβ)2[1-(cosα)2] =(cosα)2-(sinβ)2 所以原式得到了证明
复制答案
考点分析:
相关试题推荐
已知
,化简:lg+lg[
cos(x-
)-lg(1+sin2x).
查看答案
如图,图中的实线是由三段圆弧连接而成的一条封闭曲线C,各段弧所在的圆经过同一点P(点P不在C上)且半径相等.设第i段弧所对的圆心角为α
i
(i=1,2,3),则
=
.
查看答案
已知a是第二象限的角,tan(π+2a)=-
,则tana=
.
查看答案
已知α为第二象限的角,
,则tan2α=
.
查看答案
已知α为第三象限的角,
,则
=
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.