满分5 > 高中数学试题 >

设函数f(x)=, (1)求函数f(x)的单调区间; (2)若k>0,求不等式f...

设函数f(x)=manfen5.com 满分网
(1)求函数f(x)的单调区间;
(2)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集.
(1)对函数f(x)进行求导,当导数大于0时是单调递增区间,当导数小于0时是原函数的单调递减区间. (2)将f'(x)代入不等式即可求解. 【解析】 (1)∵f(x)= ∴ 由f'(x)=0,得x=1, 因为当x<0时,f'(x)<0; 当0<x<1时,f'(x)<0;当x>1时,f'(x)>0; 所以f(x)的单调增区间是:[1,+∝);单调减区间是:(-∞,0),(0,1] (2)由f'(x)+k(1-x)f(x)==>0, 得:(x-1)(kx-1)<0, 故:当0<k<1时,解集是:{x|1<x<}; 当k=1时,解集是:φ; 当k>1时,解集是:{x|<x<1}.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=-x2+ax+1-lnx.
(Ⅰ)当a=3时,求函数f(x)的单调递增区间;
(Ⅱ)若f(x)在区间(0,manfen5.com 满分网)上是减函数,求实数a的取值范围.
查看答案
设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时f′(x)g(x)+f(x)g′(x)>0且g(-3)=0,则f(x)g(x)<0的解集为     查看答案
函数f(x)=x-lnx的单调减区间为    查看答案
若f(x)=-manfen5.com 满分网x2+bln(x+2)在(-1,+∞)上是减函数,则b的取值范围是    查看答案
函数f(x)=kx3-x在R内是减函数,则k的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.