(1)对函数f(x)进行求导,当导数大于0时是单调递增区间,当导数小于0时是原函数的单调递减区间.
(2)将f'(x)代入不等式即可求解.
【解析】
(1)∵f(x)=
∴
由f'(x)=0,得x=1,
因为当x<0时,f'(x)<0;
当0<x<1时,f'(x)<0;当x>1时,f'(x)>0;
所以f(x)的单调增区间是:[1,+∝);单调减区间是:(-∞,0),(0,1]
(2)由f'(x)+k(1-x)f(x)==>0,
得:(x-1)(kx-1)<0,
故:当0<k<1时,解集是:{x|1<x<};
当k=1时,解集是:φ;
当k>1时,解集是:{x|<x<1}.