满分5 > 高中数学试题 >

如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O...

如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,manfen5.com 满分网,M是线段B1D1的中点.
(Ⅰ)求证:BM∥平面D1AC;
(Ⅱ)求三棱锥D1-AB1C的体积.

manfen5.com 满分网
(Ⅰ)由四边形D1OBM是平行四边形得D1O∥BM,由线面平行的判定得到BM∥平面D1AC (Ⅱ)由OB1⊥D1O,AC⊥D1O,得到D1O⊥平面AB1C,确定D1O为三棱锥D1-AB1C的高,同时确定△AB1C为底. 【解析】 (Ⅰ)连接D1O,如图, ∵O、M分别是BD、B1D1的中点,BD1D1B是矩形, ∴四边形D1OBM是平行四边形, ∴D1O∥BM.(2分) ∵D1O⊂平面D1AC,BM⊄平面D1AC,∴BM∥平面D1AC.(4分) (Ⅱ)连接OB1,∵正方形ABCD的边长为2,, ∴,OB1=2,D1O=2, 则OB12+D1O2=B1D12,∴OB1⊥D1O.(6分) 又∵在长方体ABCD-A1B1C1D1中,AC⊥BD,AC⊥D1D,且BD∩D1D=D, ∴AC⊥平面BDD1B1,又D1O⊂平面BDD1B1, ∴AC⊥D1O,又AC∩OB1=O,(10分) ∴D1O⊥平面AB1C,即D1O为三棱锥D1-AB1C的高.(12分) ∵,D1O=2 ∴.14(5分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(Ⅲ)用分层抽样的方法在分数段为[60,80)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[70,80)的概率.
查看答案
已知向量manfen5.com 满分网(α∈[-π,0]).向量m=(2,1),manfen5.com 满分网,且mmanfen5.com 满分网n).
(Ⅰ)求向量manfen5.com 满分网
(Ⅱ)若manfen5.com 满分网,0<β<π,求cos(2α-β).
查看答案
数列{an}满足下列条件:a1=1,且对于任意的正整数n,恒有a2n=an+n,则a2100的值为     查看答案
已知函数f(x)=x3-2x2+2有唯一零点,则下列区间必存在零点的是     查看答案
已知函数manfen5.com 满分网时,则下列结论不正确是    
(1)∀x∈R,等式f(-x)+f(x)=0恒成立;
(2)∃m∈(0,1),使得方程|f(x)|=m有两个不等实数根;
(3)∀x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2);
(4)∃k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.