满分5 > 高中数学试题 >

已知函数f(x)满足2f(x+2)-f(x)=0,当x∈(0,2)时,f(x)=...

已知函数f(x)满足2f(x+2)-f(x)=0,当x∈(0,2)时,f(x)=lnx+axmanfen5.com 满分网,当x∈(-4,-2)时,f(x)的最大值为-4.
(I)求实数a的值;
(II)设b≠0,函数manfen5.com 满分网,x∈(1,2).若对任意的x1∈(1,2),总存在x2∈(1,2),使f(x1)-g(x2)=0,求实数b的取值范围.
(I)先求出函数在(-4,-2)上的解析式,利用函数的导数求出函数的最大值(用a表示),令其等于-4,从而求出a; (II)由任意的x1∈(1,2),总存在x2∈(1,2),使f(x1)-g(x2)=0,函数f(x)的值域是函数g(x)值域的子集,即转化为求两个函数的值域,用函数的导数法即可解决. 【解析】 (I)由已知,得2f(x+2)=f(x), ∴f(x)=2f(x+2)=4f(x+4)(4分) ∵x∈(0,2)时,f(x)=lnx+ax, 设x∈(-4,-2),则x+4∈(0,2), ∴f(x+4)=ln(x+4)+a(x+4), ∴x∈(-4,-2)时,f(x)=4f(x+4)=4ln(x+4)+4a(x+4), 所以, ∵x∈(-4,-2), ∴-4ax<4+16a, ∵, ∴. 又由,可得, ∴f(x)在上是增函数,在上是减函数, ∴. ∴a=-1(7分) (II)设f(x)的值域为A,g(x)的值域为B, 则由已知,对于任意的x1∈(1,2),总存在x2∈(1,2),使f(x1)-g(x2)=0得,A⊆B.(9分) 由(I)a=-1,当x∈(1,2)时,f(x)=lnx-x,, ∵x∈(1,2), ∴f′(x)<0,f(x)在x∈(1,2)上单调递减函数, ∴f(x)的值域为A=(ln2-2,-1)(10分) ∵g'(x)=bx2-b=b(x-1)(x+1), ∴(1)当b<0时,g(x)在(1,2)上是减函数, 此时,g(x)的值域为, 为满足A⊆B,又 ∴即.(11分) (2)当b>0时,g(x)在(1,2)上是单调递增函数, 此时,g(x)的值域为,为满足A⊆B, 又,∴, ∴, 综上可知b的取值范围是(12分)
复制答案
考点分析:
相关试题推荐
已知抛物线C:manfen5.com 满分网和定点P(1,2),A、B为抛物线C上的两个动点,且直线PA和PB的斜率为非零的互为相反数.
(I)求证:直线AB的斜率是定值;
(II)若抛物线C在A、B两点处的切线相交于点M,求M的轨迹方程;
(III)若A′与A关于y轴成轴对称,求直线A′B与y轴交点P的纵坐标的取值范围.
查看答案
为了让学生更多的了解“数学史”知识,某班级举办一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动.现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表:
manfen5.com 满分网
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:为每位参加决赛的选手准备4道判断题,选手对其依次口答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对l道,则获得二等奖.某同学进入决赛,每道题答对的概率p的值恰好与频率分布表中不少于80分的频率值相同.
(i)求该同学恰好答满4道题而获得一等奖的概率;
(ii)设该同学决赛中答题个数为X,求X的分布列及X的数学期望.
查看答案
如图所示,在三棱柱ABC-A1B1C1中,侧面A1ABB1和BCC1B1是两个全等的正方形,AC1⊥平面A1DB,D为AC的中点.
(1)求证:平面A1ABB1⊥平面BCC1B1
(2)求证:B1C∥平面A1DB.

manfen5.com 满分网 查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2b-c)cosA-acosC=0,
(Ⅰ)求角A的大小;
(Ⅱ)若manfen5.com 满分网manfen5.com 满分网,试判断△ABC的形状,并说明理由.
查看答案
已知真命题:若A为⊙O内一定点,B为⊙O上一动点,线段AB的垂直平分线交直线OB于点P,则点P的轨迹是    .类比此命题,写出另一个真命题:若A为⊙O外一定点,B为⊙O上一动点,线段AB的垂直平分线交直线OB于点P,则点P的轨迹是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.