满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面A...

如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=manfen5.com 满分网,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PB与CD所成角的余弦值;
(Ⅲ)求点A到平面PCD的距离.

manfen5.com 满分网
(1)根据线面垂直的判定定理可知,只需证直线PO垂直平面ABCD中的两条相交直线垂直即可; (2)先通过平移将两条异面直线平移到同一个起点B,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可; (3)利用等体积法建立等量关系,可求得点A到平面PCD的距离. 【解析】 (Ⅰ)证明:在△PAD卡中PA=PD,O为AD中点,所以PO⊥AD. 又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD, 所以PO⊥平面ABCD. (Ⅱ)连接BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC, 有OD∥BC且OD=BC,所以四边形OBCD是平行四边形, 所以OB∥DC. 由(Ⅰ)知PO⊥OB,∠PBO为锐角, 所以∠PBO是异面直线PB与CD所成的角. 因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=, 在Rt△POA中,因为AP=,AO=1,所以OP=1, 在Rt△PBO中,PB=, cos∠PBO=, 所以异面直线PB与CD所成的角的余弦值为. (Ⅲ)由(Ⅱ)得CD=OB=, 在Rt△POC中,PC=, 所以PC=CD=DP,S△PCD=•2=. 又S△=, 设点A到平面PCD的距离h, 由VP-ACD=VA-PCD, 得S△ACD•OP=S△PCD•h, 即×1×1=××h, 解得h=.
复制答案
考点分析:
相关试题推荐
三人独立破译同一份密码.已知三人各自破译出密码的概率分别为manfen5.com 满分网,且他们是否破译出密码互不影响.
(Ⅰ)求恰有二人破译出密码的概率;
(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求tanA的值;
(Ⅱ)求函数manfen5.com 满分网的值域.
查看答案
设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、manfen5.com 满分网∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,有下列命题:
①数域必含有0,1两个数;
②整数集是数域;
③若有理数集Q⊆M,则数集M必为数域;
④数域必为无限集.
其中正确的命题的序号是    .(把你认为正确的命题的序号都填上) 查看答案
若三棱锥的三条侧棱两两垂直,且侧棱长均为manfen5.com 满分网,则其外接球的表面积是    查看答案
若直线3x+4y+m=0与圆x2+y2-2x+4y+4=0没有公共点,则实数m的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.