满分5 > 高中数学试题 >

已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)...

已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x的图象关于y轴对称.
(Ⅰ)求m、n的值及函数y=f(x)的单调区间;
(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
(Ⅰ)利用条件的到两个关于m、n的方程,求出m、n的值,再找函数y=f(x)的导函数大于0和小于0对应的区间即可. (Ⅱ)利用(Ⅰ)的结论,分情况讨论区间(a-1,a+1)和单调区间的位置关系再得结论. 【解析】 (Ⅰ)由函数f(x)图象过点(-1,-6),得m-n=-3,① 由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n, 则g(x)=f′(x)+6x=3x2+(2m+6)x+n; 而g(x)图象关于y轴对称,所以-=0,所以m=-3, 代入①得n=0. 于是f′(x)=3x2-6x=3x(x-2). 由f′(x)>得x>2或x<0, 故f(x)的单调递增区间是(-∞,0),(2,+∞); 由f′(x)<0得0<x<2, 故f(x)的单调递减区间是(0,2). (Ⅱ)由(Ⅰ)得f′(x)=3x(x-2), 令f′(x)=0得x=0或x=2. 当x变化时,f′(x)、f(x)的变化情况如下表: 由此可得: 当0<a<1时,f(x)在(a-1,a+1)内有极大值f(O)=-2,无极小值; 当a=1时,f(x)在(a-1,a+1)内无极值; 当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无极大值; 当a≥3时,f(x)在(a-1,a+1)内无极值. 综上得:当0<a<1时,f(x)有极大值-2,无极小值,当1<a<3时,f(x)有极小值-6,无极大值;当a=1或a≥3时,f(x)无极值.
复制答案
考点分析:
相关试题推荐
已知{an}是正数组成的数列,a1=1,且点(manfen5.com 满分网)(n∈N*)在函数y=x2+1的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若列数{bn}满足b1=1,bn+1=bn+manfen5.com 满分网,求证:bn•bn+2<b2n+1
查看答案
如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=manfen5.com 满分网,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PB与CD所成角的余弦值;
(Ⅲ)求点A到平面PCD的距离.

manfen5.com 满分网 查看答案
三人独立破译同一份密码.已知三人各自破译出密码的概率分别为manfen5.com 满分网,且他们是否破译出密码互不影响.
(Ⅰ)求恰有二人破译出密码的概率;
(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求tanA的值;
(Ⅱ)求函数manfen5.com 满分网的值域.
查看答案
设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、manfen5.com 满分网∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,有下列命题:
①数域必含有0,1两个数;
②整数集是数域;
③若有理数集Q⊆M,则数集M必为数域;
④数域必为无限集.
其中正确的命题的序号是    .(把你认为正确的命题的序号都填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.