满分5 > 高中数学试题 >

设数列{an}为等比数列,数列{bn}满足bn=na1+(n-1)a2+…+2a...

设数列{an}为等比数列,数列{bn}满足bn=na1+(n-1)a2+…+2an-1+an,n∈N*,已知b1=m,manfen5.com 满分网,其中m≠0.
(Ⅰ)求数列{an}的首项和公比;
(Ⅱ)当m=1时,求bn
(Ⅲ)设Sn为数列{an}的前n项和,若对于任意的正整数n,都有Sn∈[1,3],求实数m的取值范围.
(1)由已知中数列{an}为等比数列,我们只要根据bn=na1+(n-1)a2+…+2an-1+an,n∈N*,已知b1=m,,求出a1,a2然后根据公比的定义,即可求出数列{an}的首项和公比. (2)当m=1时,结合(1)的结论,我们不难给出数列{an}的通项公式,并由bn=na1+(n-1)a2+…+2an-1+an,n∈N*给出bn的表达式,利用错位相消法,我们可以对其进行化简,并求出bn; (3)由Sn为数列{an}的前n项和,及(1)的结论,我们可以给出Sn的表达式,再由Sn∈[1,3],我们可以构造一个关于m的不等式,解不等式,即可得到实数m的取值范围.在解答过程中要注意对n的分类讨论. 【解析】 (Ⅰ)由已知b1=a1, 所以a1=m b2=2a1+a2, 所以, 解得, 所以数列{an}的公比. (Ⅱ)当m=1时,, bn=na1+(n-1)a2++2an-1+an①, ②, ②-①得 所以, (Ⅲ) 因为, 所以,由Sn∈[1,3]得 , 注意到,当n为奇数时, 当n为偶数时, 所以最大值为,最小值为. 对于任意的正整数n都有, 所以,2≤m≤3. 即所求实数m的取值范围是{m|2≤m≤3}.
复制答案
考点分析:
相关试题推荐
椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=x+m与椭圆C交于两点A,B,O为坐标原点,若△OAB为直角三角形,求m的值.
查看答案
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
manfen5.com 满分网
(Ⅰ)证明:AD⊥平面PBC;
(Ⅱ)求三棱锥D-ABC的体积;
(Ⅲ)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
查看答案
已知α为锐角,且manfen5.com 满分网
(Ⅰ)求tanα的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(Ⅰ)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;
(Ⅱ)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.
查看答案
设函数f(x)的定义域为D.若存在非零实数l使得对于任意x∈M.有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数,如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数.求实数m的取值范围. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.