满分5 >
高中数学试题 >
若集合A={x|-2≤x≤3},B={x|x<-1或x>4},则集合A∩B等于(...
若集合A={x|-2≤x≤3},B={x|x<-1或x>4},则集合A∩B等于( )
A.{x|x≤3或x>4}
B.{x|-1<x≤3}
C.{x|3≤x<4}
D.{x|-2≤x<-1}
考点分析:
相关试题推荐
已知定点C(-1,0)及椭圆x
2+3y
2=5,过点C的动直线与椭圆相交于A,B两点.
(Ⅰ)若线段AB中点的横坐标是
,求直线AB的方程;
(Ⅱ)在x轴上是否存在点M,使
为常数?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案
已知定义在R上的函数f(x)=x
2(ax-3),其中a为常数.
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若函数f(x)在区间(-1,0)上是增函数,求a的取值范围;
(3)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,求正数a的取值范围.
查看答案
已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{a
n}的前n项和为S
n,点(n,S
n)(n∈N
*)均在函数y=f(x)的图象上.
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)设
,T
n是数列{b
n}的前n项和,求使得
对所有n∈N
*都成立的最小正整数m;
查看答案
如图所示,正四棱锥P-ABCD中,侧棱PA与底面ABCD所成的角的正切值为
.
(1)求侧面PAD与底面ABCD所成的二面角的大小;
(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;
(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.
查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,且2b•cosA=c•cosA+a•cosC.
(Ⅰ)求角A的大小;
(Ⅱ)若a=
,b+c=4,求△ABC的面积.
查看答案