满分5 > 高中数学试题 >

已知a>0,且a≠1,. (1)求函数f(x)的解析式; (2)判断并证明f(x...

已知a>0,且a≠1,manfen5.com 满分网
(1)求函数f(x)的解析式;
(2)判断并证明f(x)的奇偶性与单调性;
(3)对于f(x),当x∈(-1,1)时,有f(1-m)+f(1-m2)<0,求实数m的集合M.
(1)利用对数函数的性质结合换元法令t=logax,从而推出x=at,导出f(t)后,直接把f(t)中的变量t都换成x就得到f(x). (2)求出f(-x),然后把f(-x)和f(x)进行比较,若f(-x)=f(x),则f(x)是奇函数;若f(-x)=-f(x),则f(x)是偶函数;若f(-x)≠±f(x),则f(x)是非奇非偶函数.利用单调函数的定义和性质证明单调性. (3)结合f(x)的奇偶性与单调性进行求解.y=f(x),(x∈R)既是奇函数又是增函数,故由f(1-m)+f(1-m2)<0可知f(1-m)<-f(1-m2),即f(1-m)<f(m2-1),再y=f(x)在(-1,1)上是增函数求解m的取值范围. 【解析】 (1)令t=logax(t∈R), 则x=at,. ∴(x∈R). (2)∵,且x∈R, ∴f(x)为奇函数. 当a>1时,指数函数y=ax是增函数,是减函数,y=-a-x是增函数. ∴y=ax-a-x为增函数, 又因为, ∴,(x∈R)是增函数. 当0<a<1时,指数函数y=ax是减函数, 是增函数,y=-a-x是减函数. ∴u(x)=ax-a-x为减函数. 又因为, ∴,(x∈R)是增函数. 综上可知,在a>1或0<a<1时,y=f(x),(x∈R)都是增函数. (3)由(2)可知y=f(x),(x∈R)既是奇函数又是增函数. ∵f(1-m)+f(1-m2)<0, ∴f(1-m)<-f(1-m2), 又y=f(x),(x∈R)是奇函数, ∴f(1-m)<f(m2-1),, 因为函数y=f(x)在(-1,1)上是增函数, ∴-1<1-m<m2-1<1, 解之得:.
复制答案
考点分析:
相关试题推荐
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4.E是PD的中点,
(Ⅰ)求证:平面PDC⊥平面PAD;
(Ⅱ)求二面角E-AC-D的余弦值;
(Ⅲ)求直线CD与平面AEC所成角的正弦值

manfen5.com 满分网 查看答案
某小组有7个同学,其中4个同学从来没有参加过数学研究性学习活动,3个同学曾经参加过数学研究性学习活动.
(Ⅰ)现从该小组中任选2个同学参加数学研究性学习活动,求恰好选到1个曾经参加过数学研究性学习活动的同学的概率;
(Ⅱ)若从该小组中任选2个同学参加数学研究性学习活动,活动结束后,此时该小组没有参加过数学研究性学习活动的同学个数ξ是一个随机变量,求随机变量ξ的分布列及数学期望Eξ.
查看答案
A、B、C为△ABC的三内角,且其对边分别为a、b、c,若manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ) 求角A;
(Ⅱ) 若manfen5.com 满分网,三角形面积manfen5.com 满分网,求b+c的值.
查看答案
已知函数f(x)=4x2-4ax+a2-2a+2在区间[0,2]上有最小值3,求实数a的值.
查看答案
在极坐标系中,已知两点A、B的极坐标分别为(3,manfen5.com 满分网),(4,manfen5.com 满分网),则△AOB(其中O为极点)的面积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.