满分5 > 高中数学试题 >

如图,直三棱柱A1B1C1-ABC中,C1C=CB=CA=2,AC⊥CB. D、...

如图,直三棱柱A1B1C1-ABC中,C1C=CB=CA=2,AC⊥CB. D、E分别为棱C1C、B1C1的中点.
(1)求点E到平面ADB的距离;
(2)求二面角E-A1D-B的平面角的余弦值;
(3)在线段AC上是否存在一点F,使得EF⊥平面A1DB?若存在,确定其位置;若不存在,说明理由.

manfen5.com 满分网
以CB为x轴,CA为y轴,CC1为z轴,建立空间直角坐标系,则C(0,0,0),A(0,2,0),B(2,0,0),D(0,0,1),E(1,0,2).这种解法的好处就是:(1)解题过程中较少用到空间几何中判定线线、面面、线面相对位置的有关定理,因为这些可以用向量方法来解决.(2)即使立体感稍差一些的学生也可以顺利解出,因为只需画个草图以建立坐标系和观察有关点的位置即可. (1),,,设平面ADB的法向量为得:可取法向量为,则点E到平面ADB的距离. (2)A1(0,2,2),E(1,0,2),D(0,0,1)可得,, 设平面A1ED的法向量为,则,平面A1BD的法向量为,则, 所以,即求二面角E-A1D-B的余弦值为. (3)假设存在点F,坐标为(0,y,0),则,EF⊥平面A1DB得,F(0,1,0),F即为AC中点. 【解析】 (1)如图所示,以CB为x轴,CA为y轴,CC1为z轴建立空间直角坐标系,由C1C=CB=CA=2可得C(0,0,0),A(0,2,0),B(2,0,0),D(0,0,1),E(1,0,2). 则,, 设平面ADB的法向量为得 即 则取法向量为, 则点E到平面ADB的距离.(3分) (2)A1(0,2,2),E(1,0,2),D(0,0,1) 可得,, 设平面A1ED的法向量为, 故可令,A1(0,2,2),D(0,0,1),B(2,0,0), 可得,, 设平面A1BD的法向量为, 故可令, ∴, 即求二面角E-A1D-B的余弦值为;(6分) (3)假设存在点F,坐标为(0,y,0), 则, EF⊥平面A1DB得,即, ∴F(0,1,0)F即为AC中点.(10分)
复制答案
考点分析:
相关试题推荐
如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行玩游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域数为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ,每一次游戏得到奖励分为ξ
(1)求x<2且y>1的概率;
(2)某人进行了12次游戏,求他平均可以得到的奖励分.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网的图象上两相邻最高点的坐标分别为manfen5.com 满分网manfen5.com 满分网
(1)求a与ω的值;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(A)=2,求manfen5.com 满分网的值.
查看答案
如图,△ABC是圆O的内接三角形,圆O的半径r=1,AB=1,BC=manfen5.com 满分网,EC是圆O的切线,则∠ACE=   
manfen5.com 满分网 查看答案
在以O为极点的极坐标系中,直线l的极坐标方程是pcosθ-2=0,直线l与极轴相交于点M,以OM为直径的圆的极坐标方程是    查看答案
据某校环保小组调查,某区垃圾量的年增长率为b,2003年产生的垃圾量为a吨.由此预测,该区下一年的垃圾量为    吨,2008年的垃圾量为    吨. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.