满分5 > 高中数学试题 >

在平面直角坐标系xoy中,如图,已知椭圆的左、右顶点为A、B,右焦点为F.设过点...

manfen5.com 满分网在平面直角坐标系xoy中,如图,已知椭圆manfen5.com 满分网的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)设动点P满足PF2-PB2=4,求点P的轨迹;
(2)设manfen5.com 满分网,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
(1)设点P(x,y),由两点距离公式将PF2-PB2=4,变成坐标表示式,整理即得点P的轨迹方程. (2)将分别代入椭圆方程,解出点M与点N的坐标由两点式写出直线AM与直线BN的方程联立解出交点T的坐标.(3)方法一求出直线方程的参数表达式,然后求出其与x的交点的坐标,得到其横坐标为一个常数,从而说明直线过x轴上的定点. 方法二根据特殊情况即直线与x轴垂直时的情况求出定点,然后证明不垂直于x轴时两线DM与DN斜率相等,说明直线MN过该定点. 【解析】 (1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0). 由PF2-PB2=4,得(x-2)2+y2-[(x-3)2+y2]=4,化简得. 故所求点P的轨迹为直线. (2)将分别代入椭圆方程,以及y1>0,y2<0, 得M(2,)、N(,) 直线MTA方程为:,即, 直线NTB方程为:,即. 联立方程组,解得:, 所以点T的坐标为. (3)点T的坐标为(9,m) 直线MTA方程为:,即, 直线NTB方程为:,即. 分别与椭圆联立方程组,同时考虑到x1≠-3,x2≠3, 解得:、. (方法一)当x1≠x2时, 直线MN方程为: 令y=0,解得:x=1.此时必过点D(1,0); 当x1=x2时,直线MN方程为:x=1,与x轴交点为D(1,0). 所以直线MN必过x轴上的一定点D(1,0). (方法二)若x1=x2,则由及m>0,得, 此时直线MN的方程为x=1,过点D(1,0). 若x1≠x2,则,直线MD的斜率, 直线ND的斜率,得kMD=kND,所以直线MN过D点. 因此,直线MN必过x轴上的点(1,0).
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.
(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,α-β最大?
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
查看答案
在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足(manfen5.com 满分网)•manfen5.com 满分网=0,求t的值.
查看答案
将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记manfen5.com 满分网,则S的最小值是    查看答案
在锐角△ABC中,角A、B、C的对边分别为a、b、c,若manfen5.com 满分网+manfen5.com 满分网=6cosC,则manfen5.com 满分网+manfen5.com 满分网的值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.