满分5 > 高中数学试题 >

已知△ABC的三边长都是有理数. (1)求证cosA是有理数; (2)求证:对任...

已知△ABC的三边长都是有理数.
(1)求证cosA是有理数;
(2)求证:对任意正整数n,cosnA是有理数.
(1)设出三边为a,b,c,根据三者为有理数可推断出b2+c2-a2是有理数,b2+c2-a2是有理数,进而根据有理数集对于除法的具有封闭性推断出也为有理数,根据余弦定理可知=cosA,进而可知cosA是有理数. (2)先看当n=1时,根据(1)中的结论可知cosA是有理数,当n=2时,根据余弦的二倍角推断出cos2A也是有理数,再假设n≤k(k≥2)时,结论成立,进而可知coskA、cos(k-1)A均是有理数,用余弦的两角和公式分别求得cos(k+1)A,根据cosA,coskA,cos(k-1)A均是有理数推断出cosA,coskA,cos(k-1)A,即n=k+1时成立.最后综合原式得证. 【解析】 (1)证明:设三边长分别为a,b,c,, ∵a,b,c是有理数,b2+c2-a2是有理数,分母2bc为正有理数,又有理数集对于除法的具有封闭性, ∴必为有理数, ∴cosA是有理数. (2)①当n=1时,显然cosA是有理数; 当n=2时,∵cos2A=2cos2A-1,因为cosA是有理数,∴cos2A也是有理数; ②假设当n≤k(k≥2)时,结论成立,即coskA、cos(k-1)A均是有理数. 当n=k+1时,cos(k+1)A=coskAcosA-sinkAsinA,,, 解得:cos(k+1)A=2coskAcosA-cos(k-1)A ∵cosA,coskA,cos(k-1)A均是有理数,∴2coskAcosA-cos(k-1)A是有理数, ∴cosA,coskA,cos(k-1)A均是有理数. 即当n=k+1时,结论成立. 综上所述,对于任意正整数n,cosnA是有理数.
复制答案
考点分析:
相关试题推荐
某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各种产品相互独立.
(1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;
(2)求生产4件甲产品所获得的利润不少于10万元的概率.
查看答案
本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A:AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC.
B:在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=manfen5.com 满分网,N=manfen5.com 满分网,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值.
C:在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值.
D:设a、b是非负实数,求证:manfen5.com 满分网

manfen5.com 满分网 查看答案
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a),设函数f(x)=manfen5.com 满分网,其中b为实数.
(1)求证:函数f(x)具有性质P(b);
(2)求函数f(x)的单调区间.
查看答案
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列.
(1)求数列{an}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为manfen5.com 满分网
查看答案
manfen5.com 满分网在平面直角坐标系xoy中,如图,已知椭圆manfen5.com 满分网的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)设动点P满足PF2-PB2=4,求点P的轨迹;
(2)设manfen5.com 满分网,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.