满分5 > 高中数学试题 >

已知函数f(x)=x2+ax-lnx,a∈R. (1)若函数f(x)在[1,2]...

已知函数f(x)=x2+ax-lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(3)当x∈(0,e]时,证明:manfen5.com 满分网
(1)先对函数f(x)进行求导,根据函数f(x)在[1,2]上是减函数可得到其导函数在[1,2]上小于等于0应该恒成立,再结合二次函数的性质可求得a的范围. (2)先假设存在,然后对函数g(x)进行求导,再对a的值分情况讨论函数g(x)在(0,e]上的单调性和最小值取得,可知当a=e2能够保证当x∈(0,e]时g(x)有最小值3. (3)令F(x)=e2x-lnx结合(2)中知F(x)的最小值为3,再令并求导,再由导函数在0<x≤e大于等于0可判断出函数ϕ(x)在(0,e]上单调递增,从而可求得最大值也为3,即有成立,即成立. 【解析】 (1)在[1,2]上恒成立, 令h(x)=2x2+ax-1,有得, 得 (2)假设存在实数a,使g(x)=ax-lnx(x∈(0,e])有最小值3,= ①当a≤0时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=35,(舍去), ②当时,g(x)在上单调递减,在上单调递增 ∴,a=e2,满足条件. ③当时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=3,(舍去), 综上,存在实数a=e2,使得当x∈(0,e]时g(x)有最小值3. (3)令F(x)=e2x-lnx,由(2)知,F(x)min=3. 令,, 当0<x≤e时,ϕ'(x)≥0,φ(x)在(0,e]上单调递增 ∴ ∴,即>(x+1)lnx.
复制答案
考点分析:
相关试题推荐
已知命题p:在x∈[1,2]内,不等式x2+ax-2>0恒成立;命题q:函数manfen5.com 满分网是区间[1,+∞)上的减函数.若命题“p∀q”是真命题,求实数a的取值范围.
查看答案
已知cosα=manfen5.com 满分网,cos(α-β)=manfen5.com 满分网,且0<β<α<manfen5.com 满分网
(Ⅰ)求tan2α的值;
(Ⅱ)求β.
查看答案
已知函数f(x)=-x3+ax2+bx+c图象上的点P(1,f(1))处的切线方程为y=-3x+1,函数g(x)=f(x)-ax2+3是奇函数.
(1)求函数f(x)的表达式;
(2)求函数f(x)的极值.
查看答案
已知manfen5.com 满分网
(Ⅰ)求tanx的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
已知集合A={x||x-a|≤1},B={x|x2-5x+4≥0}.
(1)若a=3,求A;
(2)若A∩B=∅,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.