充分利用题中的函数(x∈R)解析式特点,研究函数的性质,如定义域、值域、奇偶性、单调性、零点等,逐一分析各个选项的正确性.
【解析】
∵函数f(x)的定义域是实数集,f(-x)=-f(x),∴函数f(x)是奇函数,故(1)正确;
∵|f(x)|=<1,∴-1<f(x)<1,故(2)正确;
∵奇函数f(x)在(0,+∞)上是增函数,∴f(x)在其定义域内是增函数,故(3)正确;
令函数g(x)=f(x)-b=0 ①,即f(x)=b,∵由(2)知:-1<f(x)<1,
∴当b≥1或b≤-1时,①无解,即函数g(x)=f(x)-b无零点;故(4)不正确.
综上,中正确结论的序号为(1)、(2)、(3).