(I)欲证CA1⊥C1P,可先证CA1⊥平面AC1B,根据直线与平面垂直的判定定理可知只需证CA1与平面AC1B内两相交直线垂直,而AB⊥CA1,AC1⊥CA1,AC1∩AB=A,满足定理条件;
(II)先求出P是AB的中点,然后连接A1P,根据二面角平面角的定义可知∠C1PA1是二面角C1-PB1-A1的平面角,在直角三角形C1PA1中求出此角的余弦值即可.
(I)证明:连接AC1,∵侧棱AA1⊥底面ABC,∴AA1⊥AB,又∵AB⊥AC.
∴AB⊥平面A1ACC1.又∵CA1⊂平面A1ACC1,∴AB⊥CA1.(2分)
∵AC=AA1=1,∴四边形A1ACC1为正方形,∴AC1⊥CA1.
∵AC1∩AB=A,∴CA1⊥平面AC1B.(4分)
又C1P⊂平面AC1B,∴CA1⊥C1P. (6分)
(II)【解析】
∵AC⊥AB,AA1⊥AC,且C1A1⊥平面ABB1A,BB1⊥AB,
由,知=,
解得PA=1,P是AB的中点.
(8分)
连接A1P,则PB1⊥A1P,∵C1A1⊥平面A1B1BA,∴PB1⊥C1A1,∴PB1⊥C1P,
∴∠C1PA1是二面角的平面角,(10分)
在直角三角形C1PA1中,,
∴,即二面角的余弦值是