满分5 > 高中数学试题 >

设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列是公差...

设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列.
(1)求数列{an}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为manfen5.com 满分网
(1)根据等差数列的通项公式,结合已知,列出关于a1、d的方程,求出a1,进而推出sn,再利用an与sn的关系求出an. (2)利用(1)的结论,对Sm+Sn>cSk进行化简,转化为基本不等式问题求解;或求出c的最大值的范围,利用夹逼法求出a的值. 【解析】 (1)由题意知:d>0,=+(n-1)d=+(n-1)d, ∵2a2=a1+a3, ∴3a2=S3,即3(S2-S1)=S3, ∴, 化简,得:, 当n≥2时,an=Sn-Sn-1=n2d2-(n-1)2d2=(2n-1)d2,适合n=1情形. 故所求an=(2n-1)d2 (2)(方法一)Sm+Sn>cSk⇒m2d2+n2d2>c•k2d2⇒m2+n2>c•k2,恒成立. 又m+n=3k且m≠n,, 故,即c的最大值为. (方法二)由及,得d>0,Sn=n2d2. 于是,对满足题设的m,n,k,m≠n,有. 所以c的最大值. 另一方面,任取实数.设k为偶数,令,则m,n,k符合条件,且. 于是,只要9k2+4<2ak2,即当时,. 所以满足条件的,从而. 因此c的最大值为.
复制答案
考点分析:
相关试题推荐
给出下面的数表序列:
manfen5.com 满分网
其中表n(n=1,2,3 …)有n行,第1行的n个数是1,3,5,…2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.
(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);
(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12…,记此数列为{bn}求和:manfen5.com 满分网(n∈N+
查看答案
已知某地今年年初拥有居民住房的总面积为a(单位:m2),其中有部分旧住房需要拆除.当地有关部门决定每年以当年年初住房面积的10%建设新住房,同事也拆除面积为b(单位:m2)的旧住房.
(Ⅰ)分别写出第一年末和第二年末的实际住房面积的表达式:
(Ⅱ)如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b是多少?(计算时取1.15=1.6)
查看答案
数列{an}中,a1=manfen5.com 满分网,前n项和Sn满足Sn+1-Sn=(manfen5.com 满分网n+1(n∈)N*
(Ⅰ)求数列{a n}的通项公式a n以及前n项和Sn
(Ⅱ)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.
查看答案
设C1,C2,…,Cn,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线manfen5.com 满分网相切,对每一个正整数n,圆Cn都与圆Cn+1相互外切,以rn表示Cn的半径,已知{rn}为递增数列.
(Ⅰ)证明:{rn}为等比数列;
(Ⅱ)设r1=1,求数列manfen5.com 满分网的前n项和.manfen5.com 满分网
查看答案
已知数列{an}满足a1=33,an+1-an=2n,则manfen5.com 满分网的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.