满分5 > 高中数学试题 >

证明以下命题: (1)对任一正整a,都存在整数b,c(b<c),使得a2,b2,...

证明以下命题:
(1)对任一正整a,都存在整数b,c(b<c),使得a2,b2,c2成等差数列.
(2)存在无穷多个互不相似的三角形△n,其边长an,bn,cn为正整数且an2,bn2,cn2成等差数列.
(1)要证a2,b2,c2成等差数列,考虑到结构即要证a2+c2=2b2,取特值12,52,72满足等差数列,只需取b=5a,c=7a,对一切正整数a均能成立.类似勾股数进行拼凑. (2)结合第一问的特征,将等差数列分解,通过一个可做多种结构分解的因式说明构成三角形,再证明互不相似,且无穷. 解(1)考虑到结构特征,取特值12,52,72满足等差数列,只需取b=5a,c=7a,对一切正整数a均能成立. (2)证明:当an2,bn2,cn2成等差数列,则bn2-an2=cn2-bn2, 分解得:(bn+an)(bn-an)=(cn+bn)(cn-bn) 选取关于n的一个多项式,4n(n2-1)做两种途径的分解4n(n2-1)=(2n-2)(2n2+2n)=(2n2-2n)(2n+2)4n(n2-1) 对比目标式,构造,由第一问结论得,等差数列成立, 考察三角形边长关系,可构成三角形的三边. 下证互不相似. 任取正整数m,n,若△m,△n相似:则三边对应成比例, 由比例的性质得:,与约定不同的值矛盾,故互不相似.
复制答案
考点分析:
相关试题推荐
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列.
(1)求数列{an}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为manfen5.com 满分网
查看答案
给出下面的数表序列:
manfen5.com 满分网
其中表n(n=1,2,3 …)有n行,第1行的n个数是1,3,5,…2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.
(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);
(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12…,记此数列为{bn}求和:manfen5.com 满分网(n∈N+
查看答案
已知某地今年年初拥有居民住房的总面积为a(单位:m2),其中有部分旧住房需要拆除.当地有关部门决定每年以当年年初住房面积的10%建设新住房,同事也拆除面积为b(单位:m2)的旧住房.
(Ⅰ)分别写出第一年末和第二年末的实际住房面积的表达式:
(Ⅱ)如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b是多少?(计算时取1.15=1.6)
查看答案
数列{an}中,a1=manfen5.com 满分网,前n项和Sn满足Sn+1-Sn=(manfen5.com 满分网n+1(n∈)N*
(Ⅰ)求数列{a n}的通项公式a n以及前n项和Sn
(Ⅱ)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.
查看答案
设C1,C2,…,Cn,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线manfen5.com 满分网相切,对每一个正整数n,圆Cn都与圆Cn+1相互外切,以rn表示Cn的半径,已知{rn}为递增数列.
(Ⅰ)证明:{rn}为等比数列;
(Ⅱ)设r1=1,求数列manfen5.com 满分网的前n项和.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.