满分5 > 高中数学试题 >

设数列满足a1=2,an+1-an=3•22n-1 (1)求数列{an}的通项公...

设数列满足a1=2,an+1-an=3•22n-1
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列的前n项和Sn
(Ⅰ)由题意得an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.由此可知数列{an}的通项公式为an=22n-1. (Ⅱ)由bn=nan=n•22n-1知Sn=1•2+2•23+3•25++n•22n-1,由此入手可知答案. 【解析】 (Ⅰ)由已知,当n≥1时,an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1 =3(22n-1+22n-3+…+2)+2=22(n+1)-1. 而a1=2, 所以数列{an}的通项公式为an=22n-1. (Ⅱ)由bn=nan=n•22n-1知Sn=1•2+2•23+3•25+…+n•22n-1① 从而22Sn=1•23+2•25+…+n•22n+1② ①-②得(1-22)•Sn=2+23+25+…+22n-1-n•22n+1. 即.
复制答案
考点分析:
相关试题推荐
正实数数列{an}中,a1=1,a2=5,且{an2}成等差数列.
(1)证明数列{an}中有无穷多项为无理数;
(2)当n为何值时,an为整数,并求出使an<200的所有整数项的和.
查看答案
证明以下命题:
(1)对任一正整a,都存在整数b,c(b<c),使得a2,b2,c2成等差数列.
(2)存在无穷多个互不相似的三角形△n,其边长an,bn,cn为正整数且an2,bn2,cn2成等差数列.
查看答案
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列.
(1)求数列{an}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为manfen5.com 满分网
查看答案
给出下面的数表序列:
manfen5.com 满分网
其中表n(n=1,2,3 …)有n行,第1行的n个数是1,3,5,…2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.
(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);
(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12…,记此数列为{bn}求和:manfen5.com 满分网(n∈N+
查看答案
已知某地今年年初拥有居民住房的总面积为a(单位:m2),其中有部分旧住房需要拆除.当地有关部门决定每年以当年年初住房面积的10%建设新住房,同事也拆除面积为b(单位:m2)的旧住房.
(Ⅰ)分别写出第一年末和第二年末的实际住房面积的表达式:
(Ⅱ)如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b是多少?(计算时取1.15=1.6)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.