满分5 > 高中数学试题 >

已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m-1+a2...

已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2
(1)求a3,a5
(2)设bn=a2n+1-a2n-1(n∈N*),证明:{bn}是等差数列;
(3)设cn=(an+1-an)qn-1(q≠0,n∈N*),求数列{cn}的前n项和Sn
(1)欲求a3,a5只需令m=2,n=1赋值即可. (2)以n+2代替m,然后利用配凑得到bn+1-bn,和等差数列的定义即可证明. (3)由(1)(2)两问的结果可以求得cn,利用乘公比错位相减求{cn}的前n项和Sn. 【解析】 (1)由题意,令m=2,n=1,可得a3=2a2-a1+2=6 再令m=3,n=1,可得a5=2a3-a1+8=20 (2)当n∈N*时,由已知(以n+2代替m)可得 a2n+3+a2n-1=2a2n+1+8 于是[a2(n+1)+1-a2(n+1)-1]-(a2n+1-a2n-1)=8 即bn+1-bn=8 所以{bn}是公差为8的等差数列 (3)由(1)(2)解答可知{bn}是首项为b1=a3-a1=6,公差为8的等差数列 则bn=8n-2,即a2n+1-a2n-1=8n-2 另由已知(令m=1)可得 an=-(n-1)2. 那么an+1-an=-2n+1 =-2n+1=2n 于是cn=2nqn-1. 当q=1时,Sn=2+4+6++2n=n(n+1) 当q≠1时,Sn=2•q+4•q1+6•q2+…+2n•qn-1. 两边同乘以q,可得 qSn=2•q1+4•q2+6•q3+…+2n•qn. 上述两式相减得 (1-q)Sn=2(1+q+q2+…+qn-1)-2nqn =2•-2nqn =2• 所以Sn=2• 综上所述,Sn=.
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*
(1)证明:{an-1}是等比数列;
(2)求数列{Sn}的通项公式,并求出使得Sn+1>Sn成立的最小正整数n.
查看答案
设数列满足a1=2,an+1-an=3•22n-1
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列的前n项和Sn
查看答案
正实数数列{an}中,a1=1,a2=5,且{an2}成等差数列.
(1)证明数列{an}中有无穷多项为无理数;
(2)当n为何值时,an为整数,并求出使an<200的所有整数项的和.
查看答案
证明以下命题:
(1)对任一正整a,都存在整数b,c(b<c),使得a2,b2,c2成等差数列.
(2)存在无穷多个互不相似的三角形△n,其边长an,bn,cn为正整数且an2,bn2,cn2成等差数列.
查看答案
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列.
(1)求数列{an}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.