满分5 > 高中数学试题 >

已知A、B、C三点的坐标分别为A(,,B(,,C(,0). (Ⅰ)求向量和向量的...

已知A、B、C三点的坐标分别为A(manfen5.com 满分网manfen5.com 满分网,B(manfen5.com 满分网manfen5.com 满分网,C(manfen5.com 满分网,0).
(Ⅰ)求向量manfen5.com 满分网和向量manfen5.com 满分网的坐标;
(Ⅱ)设manfen5.com 满分网,求f(x)的最小正周期;
(Ⅲ)求当manfen5.com 满分网manfen5.com 满分网时,f(x)的最大值及最小值.
(1)求向量的坐标,要首先向量两端点的坐标,再根据向量坐标等于终点坐标减始点坐标求解. (2)由(1)的结论,结合向量数量积的运算公式,易得f(x)的解析式,将其化为正弦型函数(或余弦型函数),再利用三角函数求周期的方法即可解答. (3)由(2)中的函数解析式,结合,,根据三角函数的性质即可求出f(x)的最大值及最小值 【解析】 (Ⅰ)=,,=,. (Ⅱ)∵ = = =cosx-sinx = = ∴f(x)的最小正周期T=2π. (Ⅲ)∵,∴. ∴当,即x=时,f(x)有最小值, 当,即x=时,f(x)有最大值.
复制答案
考点分析:
相关试题推荐
已知首项为x1的数列{xn}满足xn+1=manfen5.com 满分网(a为常数).
(1)若对于任意的x1≠-1,有xn+2=xn对于任意的n∈N*都成立,求a的值;
(2)当a=1时,若x1>0,数列{xn}是递增数列还是递减数列?请说明理由;
(3)当a确定后,数列{xn}由其首项x1确定,当a=2时,通过对数列{xn}的探究,写出“{xn}是有穷数列”的一个真命题(不必证明).说明:对于第3题,将根据写出真命题所体现的思维层次和对问题探究的完整性,给予不同的评分.
查看答案
在数列{an}中,a1=0,且对任意k∈N*,a2k-1,a2k,a2k+1成等差数列,其公差为2k.
(Ⅰ)证明a4,a5,a6成等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)记manfen5.com 满分网,证明manfen5.com 满分网
查看答案
在数列{an}中,a1=0,且对任意(k∈N*),a2k-1,a2k,a2k+1成等差数列,其公差为dk
(Ⅰ)若dk=2k,证明a2k,a2k+1,a2k+2成等比数列(k∈N*);
(Ⅱ)若对任意k∈N*,a2k-1,a2k,a2k+1成等比数列,其公比为qk
(i)设q1≠1.证明manfen5.com 满分网是等差数列;
(ii)若a2=2,证明manfen5.com 满分网(n≥2)
查看答案
已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2
(1)求a3,a5
(2)设bn=a2n+1-a2n-1(n∈N*),证明:{bn}是等差数列;
(3)设cn=(an+1-an)qn-1(q≠0,n∈N*),求数列{cn}的前n项和Sn
查看答案
已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*
(1)证明:{an-1}是等比数列;
(2)求数列{Sn}的通项公式,并求出使得Sn+1>Sn成立的最小正整数n.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.