(1)由数列的递推公式求指定项,令n=2,3代入即可;
(2)由an=2an-1+2n+3及,只要验证bn-bn-1是个常数即可;
(3)根据(2)证明可以求得bn,进而求得an,从而求得sn.
【解析】
(1)a2=2a1+2+3=1,a3=2a22+23+3=13
(2).
∴数列{bn }是公差为1的等差数列.
(3)由(2)得,∴an=(n-1)•2n-3(n∈N*)
∴sn=0×21+1×22+…+(n-1)2n-3n
令Tn=0×21+1×22+…+(n-1)2n
则2Tn=0×22+1×23+…+(n-2)2n+(n-1)2n+1
两式相减得:-Tn=22+23+…+2n-(n-1)•2n+1
==(2-n)•2n+1-4
∴Tn=(n-2)•2n+1+4
∴sn=(n-2)2n+1-3n+4.