满分5 > 高中数学试题 >

已知函数f(x)=x2-2ax+5(a>1). (1)若f(x)的定义域和值域均...

已知函数f(x)=x2-2ax+5(a>1).
(1)若f(x)的定义域和值域均是[1,a],求实数a的值;
(2)若对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.
(1)先将函数进行配方得到对称轴,判定出函数f(x)在[1,a]上的单调性,然后根据定义域和值域均为[1,a]建立方程组,解之即可; (2)将a与2进行比较,将条件“对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4”转化成对任意的x1,x2∈[1,a+1],总有f(x)max-f(x)min≤4恒成立即可. 【解析】 (1)∵f(x)=(x-a)2+5-a2(a>1), ∴f(x)在[1,a]上是减函数,又定义域和值域均为[1,a], ∴, 即,解得a=2. (2)若a≥2,又x=a∈[1,a+1],且,(a+1)-a≤a-1 ∴f(x)max=f(1)=6-2a,f(x)min=f(a)=5-a2. ∵对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4, ∴f(x)max-f(x)min≤4,即(6-2a)-(5-a2)≤4,解得-1≤a≤3, 又a≥2,∴2≤a≤3. 若1<a<2,fmax(x)=f(a+1)=6-a2,f(x)min=f(a)=5-a2, f(x)max-f(x)min≤4显然成立,综上1<a≤3.
复制答案
考点分析:
相关试题推荐
经市场调查,某商场的一种商品在过去的一个月内(以30天计)销售价格f(t)(元)与时间t(天)的函数关系近似满足manfen5.com 满分网(k为正常数),日销售量g(t)(件)与时间t(天)的函数关系近似满足g(t)=125-|t-25|,且第25天的销售金额为13000元.
(Ⅰ)求k的值;
(Ⅱ)试写出该商品的日销售金额w(t)关于时间t(1≤t≤30,t∈N)的函数关系式;
(Ⅲ)该商品的日销售金额w(t)的最小值是多少?
查看答案
已知f(x)=4msinx-cos2x(x∈R).
(1)若m=0,求f(x)的单调递增区间;
(2)若f(x)的最大值为3,求实数m的值.
查看答案
在平面直角坐标系中,点manfen5.com 满分网在角α的终边上,点Q(sin2θ,-1)在角β的终边上,且manfen5.com 满分网
(1)求cos2θ;
(2)求sin(α+β)的值.
查看答案
已知{an}为等差数列,且a3=-6,a6=0.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求数列{bn}的前n项和公式.
查看答案
给定两个长度为1的平面向量manfen5.com 满分网manfen5.com 满分网,它们的夹角为120°.如图所示,点C在以O为圆心,以1半径的圆弧AB上变动.若manfen5.com 满分网=xmanfen5.com 满分网+ymanfen5.com 满分网,其中x,y∈R,则x+y的最大值是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.