满分5 > 高中数学试题 >

已知函数f(x)=x3+ax2+bx. (1)若函数y=f(x)在x=2处有极值...

已知函数f(x)=x3+ax2+bx.
(1)若函数y=f(x)在x=2处有极值-6,求y=f(x)的单调递减区间;
(2)若y=f(x)的导数f′(x)对x∈[-1,1]都有f′(x)≤2,求manfen5.com 满分网的范围.
求出f′(x),(1)根据函数在x=2处有极值-6得到f′(2)等于0且f(2)等于-6,联立即可求出a与b的值代入到导函数中得到其解析式,令导函数小于0得到关于x的不等式,求出解集即为函数的递减区间; (2)因为导函数x∈[-1,1]都有f′(x)≤2得到f′(1)和f′(-1)都小于等于2,联立构成不等式组,在平面直角坐标系中画出组成的区域如图阴影部分,设z等于,则z表示阴影部分中任意一点(a,b)与(1,0)连线的斜率,根据图形可得出z的取值范围. 【解析】 (1)f′(x)=3x2+2ax+b 依题意有即解得 ∴f′(x)=3x2-5x-2 由f′(x)<0,即(3x+1)(x-2)<0,解得 ∴y=f(x)的单调递减区间是:; (2)由得 不等式组确定的平面区域如图阴影部分所示: 由得∴Q点的坐标为(0,-1). 设,则z表示平面区域内的点(a,b)与点P(1,0)连线斜率. ∵KPQ=1,由图可知z≥1或z≤-2, 即
复制答案
考点分析:
相关试题推荐
已知cos(x-manfen5.com 满分网)=manfen5.com 满分网,x∈(manfen5.com 满分网manfen5.com 满分网).
(1)求sinx的值;
(2)求sin(2xmanfen5.com 满分网)的值.
查看答案
若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出下列四个函数:①f1(x)=sinx+cosx,②manfen5.com 满分网,③f3(x)=sinx,④manfen5.com 满分网,其中“同形”函数有     查看答案
已知函数f(x)=x2-|x|,若f(-m2-1)<f(2),则实数m的取值范围是    查看答案
对于任意k∈[-1,1],函数f(x)=x2+(k-4)x-2k+4的值恒大于零,则x的取值范围是    查看答案
曲线y=manfen5.com 满分网x3+x在点(1,manfen5.com 满分网)处的切线与坐标轴围成的三角形面积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.