满分5 > 高中数学试题 >

已知圆x2+y2=25,△ABC内接于此圆,A点的坐标(3,4),O为坐标原点....

已知圆x2+y2=25,△ABC内接于此圆,A点的坐标(3,4),O为坐标原点.
(1)若△ABC的重心是manfen5.com 满分网,求直线BC的方程;(三角形重心是三角形三条中线的交点,并且重心到顶点的距离是它到对边中点距离的两倍)
(2)若直线AB与直线AC的倾斜角互补,求证:直线BC的斜率为定值.
(1)要求三角形顶点的坐标,可先将它们的坐标设出来,根据重心的性质,我们不难求出BC边上中点D的坐标,及BC所在直线的斜率,代入直线的点斜式方程即可求出答案. (2)若直线AB与直线AC的倾斜角互补,则他们的斜率互为相反数,又由他们都经过A点,则可以设出他们的点斜式方程,代入圆方程后,求出BC两点的坐标,代入斜率公式,即可求证出正确的结论. 【解析】 设B(x1,y1),C(x2,y2), 由题意可得: 即, 又, 相减得:(x1+x2)(x1-x2)+(y1+y2)(y1-y2)=0, ∴ ∴直线BC的方程为y-1=-(x-1),即x+y-2=0 (2)设AB:y=k(x-3)+4,代入圆的方程整理得: (1+k2)x2+(8k-6k2)x+9k2-24k-9=0 ∵3,x1是上述方程的两根, ∴ 同理可得: ∴
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网在直角△ABC中,两直角边的长分别为a,b,直角顶点C到斜边的距离为h,则易证manfen5.com 满分网.在四面体SABC中,侧棱SA,SB,SC两两垂直,SA=a,SB=b,SC=c,点S到平面ABC的距离为h,类比上述结论,写出h与a,b,c的等式关系并证明.
查看答案
设数列{an},{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,若{an+1-an}是等差数列,{bn+1-bn}是等比数列.
(1)分别求出数列{an},{bn}的通项公式;
(2)求数列{an}中最小项及最小项的值.
查看答案
在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为manfen5.com 满分网的圆C经过坐标原点O,椭圆manfen5.com 满分网与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.
查看答案
已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形纸片的右下角折起,使该角的顶点B落在矩形的边AD上,且折痕MN的两端点M、N分别位于边AB、BC上,设∠MNB=θ,MN=l.
(1)试将l表示成θ的函数;
(2)求l的最小值.

manfen5.com 满分网 查看答案
已知函数f(x)=x3+ax2+bx.
(1)若函数y=f(x)在x=2处有极值-6,求y=f(x)的单调递减区间;
(2)若y=f(x)的导数f′(x)对x∈[-1,1]都有f′(x)≤2,求manfen5.com 满分网的范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.