由根据等差数列性质可知,利用S1和S2,可知a1和a2.由可得公比q,故能确定数列是该数列的“基本量”;
由a2与S3,设其公比为q,首项为a1,可得把a1和S3代入整理得a2q2+(a2-S3q)+a2=0
q不能确定,不一定是数列 的基本量;
由a1与an,可得an=a1qn-1,当n为奇数时,q可能有两个值,故不一定能确定数列;
根据等比数列通项公式,数列{an} 能够确定,是数列{an} 的一个基本量.
【解析】
(1)由S1和S2,可知a1和a2.由可得公比q,故能确定数列是该数列的“基本量”①对;
(2)由a2与S3,设其公比为q,首项为a1,可得a2=a1q,a1=,S3=a1+a1q+a1q2,
∴S3=+a2+a2q,∴a2q2+(a2-S3q)+a2=0;
满足条件的q可能不存在,也可能不止一个,因而不能确定数列,故不一定是数列 的基本量,②不对;
(3)由a1与an,可得an=a1qn-1,当n为奇数时,q可能有两个值,故不一定能确定数列,所以也不一定是数列的一个基本量.
(4)由q与an由an=a1qn-1,故数列{an} 能够确定,是数列{an} 的一个基本量;
故答案为①④