满分5 > 高中数学试题 >

已知函数f(x)=(a+1)lnx+ax2+1 (1)讨论函数f(x)的单调性;...

已知函数f(x)=(a+1)lnx+ax2+1
(1)讨论函数f(x)的单调性;
(2)设a<-1.如果对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范围.
(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间. (2)根据第一问的单调性先对|f(x1)-f(x2)|≥4|x1-x2|进行化简整理,转化成研究g(x)=f(x)+4x在(0,+∞)单调减函数,再利用参数分离法求出a的范围. 【解析】 (Ⅰ)f(x)的定义域为(0,+∞).. 当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调增加; 当a≤-1时,f′(x)<0,故f(x)在(0,+∞)单调减少; 当-1<a<0时,令f′(x)=0,解得. 则当时,f'(x)>0;时,f'(x)<0. 故f(x)在单调增加,在单调减少. (Ⅱ)不妨假设x1≥x2,而a<-1,由(Ⅰ)知在(0,+∞)单调减少, 从而∀x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2| 等价于∀x1,x2∈(0,+∞),f(x2)+4x2≥f(x1)+4x1① 令g(x)=f(x)+4x,则 ①等价于g(x)在(0,+∞)单调减少,即. 从而 故a的取值范围为(-∞,-2].(12分)
复制答案
考点分析:
相关试题推荐
某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产,已知该厂连续生产n个月的累计产量为manfen5.com 满分网吨,但如果产量超过96吨,将会给环境造成危害.
(1)请你代表环保部门给厂拟定最长的生产周期;
(2)若该厂在环保部门的规定下生产,但需要每月交纳a万元的环保税,已知每吨产品售价0.6万元,第n个月的工人工资为manfen5.com 满分网万元,若每月都赢利,求出a的范围.
查看答案
设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N*).
(1)设bn=an+1-2an,证明数列{bn}是等比数列;
(2)求数列{an}的通项公式.
查看答案
已知manfen5.com 满分网
(1)求f(x)的最小正周期
(2)若manfen5.com 满分网,求f(x)的值域.
查看答案
在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC
(Ⅰ)求A的大小;
(Ⅱ)若sinB+sinC=1,试判断△ABC的形状.
查看答案
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.