满分5 > 高中数学试题 >

已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点...

已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(1)求椭圆C的标准方程;
(2)已知圆O:x2+y2=1,直线l:mx+ny=1.试证明:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长L的取值范围.
(1)由x+ky-3=0得,(x-3)+ky=0,所以F为(3,0).由题设知,由此可求出椭圆C的方程. (2)因为点P(m,n)在椭圆C上运动,所以+=1.从而圆心O到直线l的距离d===<1.由此可求出直线l被圆O截得的弦长的取值范围. 【解析】 (1)由x+ky-3=0得,(x-3)+ky=0, 所以直线过定点(3,0),即F为(3,0). 设椭圆C的方程为+=1(a>b>0), 则解得 故所求椭圆C的方程为+=1. (2)因为点P(m,n)在椭圆C上运动,所以+=1. 从而圆心O到直线l的距离 d===<1. 所以直线l与圆O恒相交. 又直线l被圆O截得的弦长 L=2=2=2,由于0≤m2≤25, 所以16≤m2+16≤25,则L∈[,], 即直线l被圆O截得的弦长的取值范围是[,].
复制答案
考点分析:
相关试题推荐
某工厂生产某种儿童玩具,每件玩具的成本为30元,并且每件玩具的加工费为t元(其中t为常数,且2≤t≤5),设该工厂每件玩具的出厂价为x元(35≤x≤41),根据市场调查,日销售量与ex(e为自然对数的底数)成反比例,当每件玩具的出厂价为40元时,日销售量为10件.
(1)求该工厂的日利润y(元)与每件玩具的出厂价x元的函数关系式;
(2)当每件玩具的日售价为多少元时,该工厂的利润y最大,并求y的最大值.
查看答案
在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后.得到如图所示的几何体ABCD-A1C1D1,且这个几何体的体积为manfen5.com 满分网
(1)求A1A的长;
(2)在线段BC1上是否存在点P,使直线A1P与C1D垂直,如果存在,求线段A1P的长,如果不存在,请说明理由.

manfen5.com 满分网 查看答案
在等差数列{an}中,a1=1,前n项和Sn满足条件manfen5.com 满分网
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=anpan(p>0),求数列{bn}的前n项和Tn
查看答案
已知:命题p:函数g(x)的图象与函数f(x)=1-3x的图象关于直线y=x对称,且|g(a)|<2.命题q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=φ.求实数a的取值范围,使命题p、q有且只有一个是真命题.
查看答案
已知定义在R上的函数f(x)=x2(ax-3),若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,则正数a的范围    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.