满分5 > 高中数学试题 >

已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn...

已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n项和,则使得Sn达到最大值的n是( )
A.21
B.20
C.19
D.18
写出前n项和的函数解析式,再求此式的最值是最直观的思路,但注意n取正整数这一条件. 【解析】 设{an}的公差为d,由题意得 a1+a3+a5=a1+a1+2d+a1+4d=105,即a1+2d=35,① a2+a4+a6=a1+d+a1+3d+a1+5d=99,即a1+3d=33,② 由①②联立得a1=39,d=-2, ∴sn=39n+×(-2)=-n2+40n=-(n-20)2+400, 故当n=20时,Sn达到最大值400. 故选B.
复制答案
考点分析:
相关试题推荐
已知某几何体的三视图如右图所示,根据图中的数据,则该几何体的体积是( )manfen5.com 满分网
A.6
B.8
C.18
D.24
查看答案
已知复数z的实部为-1,虚部为2,则manfen5.com 满分网=( )
A.2-i
B.2+i
C.-2-i
D.-2+i
查看答案
设a>1,函数f(x)=ax+1-2.
(1)求f(x)的反函数f-1(x);
(2)若f-1(x)在[0,1]上的最大值与最小值互为相反数,求a的值;
(3)若f-1(x)的图象不经过第二象限,求a的取值范围.
查看答案
如图,ABCD-A1B1C1D1是正四棱柱,则棱长为3,底面边长为2,E是棱BC的中点.
(I)求异面直线AA1和BD1所成角的大小;
(II)求证:BD1∥平面C1DE;
(III)求二面角C1-DE-C的大小.

manfen5.com 满分网 查看答案
在一天内甲、乙、丙三台设备是否需要维护相互之间没有影响,且甲、乙、丙在一天内不需要维护的概率依次为0.9、0.8、0.85.则在一天内
(I)三台设备都需要维护的概率是多少?
(II)恰有一台设备需要维护的概率是多少?
(III)至少有一台设备需要维护的概率是多少?
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.