满分5 > 高中数学试题 >

某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采...

某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.
(I)求从甲、乙两组各抽取的人数;
(II)求从甲组抽取的工人中恰有1名女工人的概率;
(III)记ξ表示抽取的3名工人中男工人数,求ξ的数学期望.
(I)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关. (II)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案. (III)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案. 【解析】 (I)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名. (II)因为由上问求得;在甲中抽取2名工人, 故从甲组抽取的工人中恰有1名女工人的概率 (III)ξ的可能取值为0,1,2,3 , , , 故Eξ==.
复制答案
考点分析:
相关试题推荐
设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N*).
(1)设bn=an+1-2an,证明数列{bn}是等比数列;
(2)求数列{an}的通项公式.
查看答案
manfen5.com 满分网如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1
(I)证明:AB=AC;
(II)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小.
查看答案
设△ABC的内角A、B、C的对边长分别为a、b、c,manfen5.com 满分网,b2=ac,求B.
查看答案
求证:菱形各边中点在以对角线的交点为圆心的同一个圆上. 查看答案
设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于manfen5.com 满分网,则球O的表面积等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.