满分5 > 高中数学试题 >

已知函数f(x)=ax2+bx(a≠0)的导函数f'(x)=-2x+7,数列{a...

已知函数f(x)=ax2+bx(a≠0)的导函数f'(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(I)求数列{an}的通项公式及Sn的最大值;
(II)令manfen5.com 满分网,其中n∈N*,求{nbn}的前n项和.
(I)求出f(x)的导函数即可得到a与b的值,然后把Pn(n,Sn)代入到f(x)中得到Sn=-n2+7n,利用an=Sn-Sn-1得到通项公式,令an=-2n+8≥0得到n的范围即可求出Sn的最大值; (II)由题知,数列{bn}是首项为8,公比是的等比数列,表示出{nbn}的各项,利用错位相减法求出{nbn}的前n项和即可. 【解析】 (I)∵f(x)=ax2+bx(a≠0),∴f'(x)=2ax+b 由f'(x)=-2x+7得:a=-1,b=7,所以f(x)=-x2+7x 又因为点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上,所以有Sn=-n2+7n 当n=1时,a1=S1=6 当n≥2时,an=Sn-Sn-1=-2n+8,∴an=-2n+8(n∈N*) 令an=-2n+8≥0得n≤4,∴当n=3或n=4时,Sn取得最大值12 综上,an=-2n+8(n∈N*),当n=3或n=4时,Sn取得最大值12 (II)由题意得 所以,即数列{bn}是首项为8,公比是的等比数列, 故{nbn}的前n项和Tn=1×23+2×22++n×2-n+4① ② 所以①-②得: ∴
复制答案
考点分析:
相关试题推荐
在一条笔直的工艺流水线上有n个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为x1,x2,…,xn,每个工作台上有若干名工人.现要在流水线上建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.
(Ⅰ)若n=3,每个工作台上只有一名工人,试确定供应站的位置;
(Ⅱ)若n=5,工作台从左到右的人数依次为3,2,1,2,2,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.
manfen5.com 满分网
查看答案
⊙O半径为manfen5.com 满分网,AB,CD是互相垂直的直径,沿AB将圆面折成大小为θ的二面角.
(Ⅰ)当θ=90°时,求四面体D-ABC的表面积;
(Ⅱ)当θ=90°时,求异面直线AC与BD所成的角;
(Ⅲ)当θ为何值时,四面体D-ABC的体积manfen5.com 满分网

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC
(1)求角B的大小;
(2)设向量manfen5.com 满分网,求manfen5.com 满分网的最大值.
查看答案
如图,△ABC是圆O的内接三角形,圆O的半径r=1,AB=1,BC=manfen5.com 满分网,EC是圆O的切线,则∠ACE=   
manfen5.com 满分网 查看答案
在以O为极点的极坐标系中,直线l的极坐标方程是pcosθ-2=0,直线l与极轴相交于点M,以OM为直径的圆的极坐标方程是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.