公差d≠0的等差数列{a
n}的前n项和为S
n,已知
,
.
(Ⅰ)求数列{a
n}的通项公式a
n及其前n项和S
n;
(Ⅱ)记
,若自然数η
1,η
2,…,η
k,…满足1≤η
1<η
2<…<η
k<…,并且
成等比数列,其中η
1=1,η
2=3,求η
k(用k表示);
(Ⅲ)记
,试问:在数列{c
n}中是否存在三项c
r,c
s,c
t(r<s<t,r,s,t∈N
*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,已知抛物线C:y
2=2px(p>0)的焦点为F,A是抛物线上横坐标为8且位于x轴上方的点. A到抛物线准线的距离等于10,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标;
(Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系.
查看答案
经市场调查,某商场的一种商品在过去的一个月内(以30天计)销售价格f(t)(元)与时间t(天)的函数关系近似满足
(k为正常数),日销售量g(t)(件)与时间t(天)的函数关系近似满足g(t)=125-|t-25|,且第25天的销售金额为13000元.
(Ⅰ)求k的值;
(Ⅱ)试写出该商品的日销售金额w(t)关于时间t(1≤t≤30,t∈N)的函数关系式;
(Ⅲ)该商品的日销售金额w(t)的最小值是多少?
查看答案
如图,在四棱锥P-ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=PD=
AD,若E、F分别为PC、BD的中点.
(Ⅰ) 求证:EF∥平面PAD;
(Ⅱ) 求证:EF⊥平面PDC.
查看答案
在△ABC中,已知角A,B所对的边分别为a,b,且a=25,b=39,
.
(Ⅰ)求sinB的值;
(Ⅱ)求
的值.
查看答案
已知f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x>0时,f(x)=lnx-ax.若函数f(x)在其定义域上有且仅有四个不同的零点,则实数a的取值范围是______.
查看答案