满分5 > 高中数学试题 >

已知函数. (1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;...

已知函数manfen5.com 满分网
(1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(2)当a=1时,求f(x)在manfen5.com 满分网上的最大值和最小值;
(3)当a=1时,求证:对大于1的任意正整数n,都有manfen5.com 满分网
(1)对函数f(x)进行求导,令导函数大于等于0在[1,+∞)上恒成立即可求出a的范围. (2)将a=1代入函数f(x)的解析式,判断其单调性进而得到最大值和最小值. (3)先判断函数f(x)的单调性,令代入函数f(x)根据单调性得到不等式,令n=1,2,…代入可证. 【解析】 (1)∵ ∴ ∵函数f(x)在[1,+∞)上为增函数 ∴对x∈[1,+∞)恒成立, ∴ax-1≥0对x∈[1,+∞)恒成立,即对x∈[1,+∞)恒成立 ∴a≥1 (2)当a=1时,, ∴当时,f′(x)<0,故f(x)在上单调递减; 当x∈(1,2]时,f′(x)>0,故f(x)在x∈(1,2]上单调递增, ∴f(x)在区间上有唯一极小值点,故f(x)min=f(x)极小值=f(1)=0 又 ∵e3>16 ∴ ∴f(x)在区间上的最大值 综上可知,函数f(x)在上的最大值是1-ln2,最小值是0. (3)当a=1时,,, 故f(x)在[1,+∞)上为增函数. 当n>1时,令,则x>1,故f(x)>f(1)=0 ∴,即 ∴ ∴ ∴ 即对大于1的任意正整数n,都有
复制答案
考点分析:
相关试题推荐
已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点,且1是其中一个零点.
(1)求b的值;
(2)求f(2)的取值范围;
(3)试探究直线y=x-1与函数y=f(x)的图象交点个数的情况,并说明理由.
查看答案
已知a∈R,函数manfen5.com 满分网,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).
(1)求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x∈(0,e],使曲线y=g(x)在点x=x处的切线与y轴垂直?若存在,求出x的值;若不存在,请说明理由.
查看答案
已知函数manfen5.com 满分网,则f[f(2010)]=    查看答案
设函数manfen5.com 满分网,若[x]表示不大于x的最大整数,则函数manfen5.com 满分网的值域是    查看答案
已知A、B、C是直线l上的三点,向量manfen5.com 满分网满足manfen5.com 满分网manfen5.com 满分网,则函数y=f(x)的表达式为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.