满分5 > 高中数学试题 >

从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为...

从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
由题意知本题是一个古典概型,试验包含的所有事件根据分步计数原理知共有5×3种结果,而满足条件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3种结果. 【解析】 由题意知本题是一个古典概型, ∵试验包含的所有事件根据分步计数原理知共有5×3种结果, 而满足条件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3种结果, ∴由古典概型公式得到P==, 故选D.
复制答案
考点分析:
相关试题推荐
在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是( )
A.4+8i
B.8+2i
C.2+4i
D.4+i
查看答案
(北京卷理1)集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},则P∩M=( )
A.{1,2}
B.{0,1,2}
C.{x|0≤x<3}
D.{x|0≤x≤3}
查看答案
数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Tn,且manfen5.com 满分网,求证:对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,总有Tn<2;
(3)正数数列{cn}中,an+1=(cnn+1(n∈N*),求数列{cn}中的最大项.
查看答案
已知椭圆C中心在原点、焦点在x轴上,椭圆C上的点到焦点的最大值为3,最小值为1.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N(M、N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线l过定点,并求出定点的坐标.
查看答案
manfen5.com 满分网设f(x)=ax3+bx2+cx的极小值为-8,其导函数y=f'(x)的图象经过点manfen5.com 满分网,如图所示,
(1)求f(x)的解析式;
(2)若对x∈[-3,3]都有f(x)≥m2-14m恒成立,求实数m的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.