满分5 > 高中数学试题 >

甲、乙俩人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为. (Ⅰ...

甲、乙俩人各进行3次射击,甲每次击中目标的概率为manfen5.com 满分网,乙每次击中目标的概率为manfen5.com 满分网
(Ⅰ)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望Eξ;
(Ⅱ)求乙至多击中目标2次的概率;
(Ⅲ)求甲恰好比乙多击中目标2次的概率.
(1)由题意得甲击中目标的次数ξ为0、1、2、3,根据独立重复试验公式得到变量对应的概率,当变量为0时表示没有击中目标,当变量为1时表示击中目标1次,当变量为2时表示击中目标2次,当变量为3时表示击中目标3次,写出分布列和期望. (2)乙至多击中目标2次的对立事件是乙能击中3次,由对立事件的概率公式得到要求的概率. (3)甲恰比乙多击中目标2次包含甲恰击中目标2次且乙恰击中目标0次和甲恰击中目标3次且乙恰击中目标1次,且这两种情况是互斥的,根据互斥事件的概率公式得到结果. 【解析】 (I)由题意得甲击中目标的次数ξ为0、1、2、3, 根据独立重复试验公式得到变量对应的概率, 当变量为0时表示没有击中目标, 当变量为1时表示击中目标1次, 当变量为2时表示击中目标2次, 当变量为3时表示击中目标3次, ∴P(ξ=0)==, P(ξ=1)==, P(ξ=2)==, P(ξ=3)==, ∴ξ的概率分布如下表: Eξ=O•+1•+2•+3•=1.5,(或Eξ=3•=1.5); (II)乙至多击中目标2次的对立事件是乙能击中3次, 有对立事件的概率公式得到 概率为1-=; (III)设甲恰比乙多击中目标2次为事件A,甲恰击中目标2次且乙恰击中目标0次为事件B1, 甲恰击中目标3次且乙恰击中目标1次为事件B2, 则A=B1+B2, B1,B2为互斥事件P(A)=P(B2)=•+•= ∴甲恰好比乙多击中目标2次的概率为.
复制答案
考点分析:
相关试题推荐
如图,在直四棱柱ABCD-A1B1C1D1中,AB=AD=2,DC=2manfen5.com 满分网,AA1=manfen5.com 满分网,AD⊥DC,AC⊥BD垂足为E.
(Ⅰ)求证BD⊥A1C;
(Ⅱ)求二面角A1-BD-C1的大小;
(Ⅲ)求异面直线AD与BC1所成角的大小.

manfen5.com 满分网 查看答案
已知函数f(x)=-x3+3x2+9x+a.
(I)求f(x)的单调递减区间;
(Ⅱ)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
查看答案
已知n次多项式Pn(x)=axn+a1xn-1+…+an-1x+an
如果在一种算法中,计算xk(k=2,3,4,…,n)的值需要k-1次乘法,计算P3(x)的值共需要9次运算(6次乘法,3次加法),那么计算Pn(x)的值共需要    次运算.
下面给出一种减少运算次数的算法:P(x)=a.Pn+1(x)=xPn(x)+ak+1(k=0,l,2,…,n-1).利用该算法,计算P3(x)的值共需要6次运算,计算Pn(x)的值共需要    次运算. 查看答案
设函数f(x)=2x,对于任意的x1,x2(x1≠x2),有下列命题
①f(x1+x2)=f(x1)•f(x2);②f=f(x1)+f(x2);③manfen5.com 满分网;④manfen5.com 满分网.其中正确的命题序号是     查看答案
过原点作曲线y=ex的切线,则切点的坐标为     ,切线的斜率为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.