满分5 > 高中数学试题 >

已知函数. (Ⅰ)若函数在区间(其中a>0)上存在极值,求实数a的取值范围; (...

已知函数manfen5.com 满分网
(Ⅰ)若函数在区间manfen5.com 满分网(其中a>0)上存在极值,求实数a的取值范围;
(Ⅱ)如果当x≥1时,不等式manfen5.com 满分网恒成立,求实数k的取值范围;
(Ⅲ)求证[(n+1)!]2>(n+1)•en-2(n∈N*).
(Ⅰ)求出函数的极值,在探讨函数在区间(其中a>0)上存在极值,寻找关于a的不等式,求出 实数a的取值范围; (Ⅱ)如果当x≥1时,不等式恒成立,把k分离出来,转化为求函数最值. (Ⅲ)借助于(Ⅱ)的结论证明不等式. 【解析】 (Ⅰ)因为,x>0,则, 当0<x<1时,f′(x)>0;当x>1时,f′(x)<0. 所以f(x)在(0,1)上单调递增;在(1,+∞)上单调递减, 所以函数f(x)在x=1处取得极大值. 因为函数f(x)在区间(其中a>0)上存在极值, 所以,解得. (Ⅱ)不等式, 即为,记, 所以, 令h(x)=x-lnx,则,∵x≥1,∴h′(x)≥0. ∴h(x)在[1,+∞)上单调递增,∴[h(x)]min=h(1)=1>0, 从而g′(x)>0 故g(x)在[1,+∞)上也单调递增, ∴[g(x)]min=g(1)=2,所以k≤2 (3)由(2)知:恒成立, 即, 令x=n(n+1),则, 所以, ,, . 叠加得:ln[1×22×32× = 则1×22×32×n2×(n+1)>en-2, 所以[(n+1)!]2>(n+1)•en-2(n∈N*)
复制答案
考点分析:
相关试题推荐
如图,在矩形ABCD中,AB=1,AC=2,O为AC中点,抛物线的一部分在矩形内,点O为抛物线顶点,点B,D在抛物线上,在矩形内随机地放一点,则此点落在阴影部分的概率为    
manfen5.com 满分网 查看答案
函数y=x2+1(0≤x≤1)图象上点P处的切线与直线y=0,x=0,x=1围成的梯形面积等于S,则S的最大值等于    ,此时点P的坐标是    查看答案
若函数f(x)=-x3+cx+2(c∈R),则manfen5.com 满分网、f/(-1)、f/(0)的大小关系    查看答案
设函数y=f(x)的定义域为R+,若对于给定的正数K,定义函数manfen5.com 满分网,则当函数f(x)=manfen5.com 满分网,K=1时,manfen5.com 满分网(x)dx的值为( )
A.2ln2
B.2ln2-1
C.2ln2
D.2ln2+1
查看答案
已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,若a=30.3•f(30.3),b=(logπ3)•f(logπ3),c=(manfen5.com 满分网)•f(manfen5.com 满分网).则a,b,c的大小关系是( )
A.a>b>c
B.c>a>b
C.c>b>a
D.a>c>b
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.