满分5 > 高中数学试题 >

椭圆的离心率为,长轴端点与短轴端点间的距离为. (Ⅰ)求椭圆C的方程; (Ⅱ)过...

椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,长轴端点与短轴端点间的距离为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点D(0,4)的直线l与椭圆C交于两点E,F,O为坐标原点,若△OEF为直角三角形,求直线l的斜率.
(Ⅰ)由已知,a2+b2=5,由此能够求出椭圆C的方程. (Ⅱ)根据题意,过点D(0,4)满足题意的直线斜率存在,设l:y=kx+4,联立,,再由根与系数的关系求解. 【解析】 (Ⅰ)由已知,a2+b2=5, 又a2=b2+c2,解得a2=4,b2=1, 所以椭圆C的方程为; (Ⅱ)根据题意,过点D(0,4)满足题意的直线斜率存在,设l:y=kx+4, 联立,,消去y得(1+4k2)x2+32kx+60=0, △=(32k)2-240(1+4k2)=64k2-240, 令△>0,解得. 设E,F两点的坐标分别为(x1,y1),(x2,y2), (ⅰ)当∠EOF为直角时, 则, 因为∠EOF为直角,所以,即x1x2+y1y2=0, 所以(1+k2)x1x2+4k(x1+x2)+16=0, 所以,解得. (ⅱ)当∠OEF或∠OFE为直角时,不妨设∠OEF为直角, 此时,kOE•k=-1,所以,即x12=4y1-y12①, 又;②, 将①代入②,消去x1得3y12+4y1-4=0, 解得或y1=-2(舍去), 将代入①,得, 所以, 经检验,所求k值均符合题意,综上,k的值为和.
复制答案
考点分析:
相关试题推荐
在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)设Q为侧棱PC上一点,manfen5.com 满分网,试确定λ的值,使得二面角Q-BD-P为45°.

manfen5.com 满分网 查看答案
在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率;
(Ⅲ)该选手在选拔过程中回答过的问题的个数记为X,求随机变量X的分布列和期望.
查看答案
已知α为锐角,且manfen5.com 满分网
(Ⅰ)求tanα的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是     .如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是     查看答案
已知双曲线x2-manfen5.com 满分网=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则manfen5.com 满分网manfen5.com 满分网最小值为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.