(1)由函数奇偶性的定义可知,f(-x)+f(x)=0,将f(x)的解析式代入求解m即可.
(2)先求出f(x)的定义域,因为函数是奇函数,故只要先判断f(x)在(0,1)内的单调性即可,可由单调性的定义直接判断.
【解析】
(1)∵f(x)是奇函数,∴f(-x)+f(x)=0;
即,解得:m=1,其中m=-1(舍);
经验证当m=1时,确是奇函数.
(2)先研究f(x)在(0,1)内的单调性,任取x1、x2∈(0,1),且设x1<x2,则
,
,
得f(x1)-f(x2)>0,即f(x)在(0,1)内单调递减;
由于f(x)是奇函数,其图象关于原点对称,所以函数f(x)在(-1,0)内单调递减.