(1)欲证DE为异面直线AB1与CD的公垂线,即证DE与异面直线AB1与CD垂直相交即可;
(2)将AB1平移到DG,故∠CDG为异面直线AB1与CD的夹角,作HK⊥AC1,K为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH为二面角A1-AC1-B1的平面角,在三角形B1KH中求出此角即可.
【解析】
(1)连接A1B,记A1B与AB1的交点为F.
因为面AA1BB1为正方形,故A1B⊥AB1,且AF=FB1,
又AE=3EB1,所以FE=EB1,
又D为BB1的中点,
故DE∥BF,DE⊥AB1.
作CG⊥AB,G为垂足,由AC=BC知,G为AB中点.
又由底面ABC⊥面AA1B1B.连接DG,则DG∥AB1,故DE⊥DG,由三垂线定理,得DE⊥CD.
所以DE为异面直线AB1与CD的公垂线.
(2)因为DG∥AB1,故∠CDG为异面直线AB1与CD的夹角,∠CDG=45°
设AB=2,则AB1=,DG=,CG=,AC=.
作B1H⊥A1C1,H为垂足,因为底面A1B1C1⊥面AA1CC1,故B1H⊥面AA1C1C.又作HK⊥AC1,K为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH为二面角A1-AC1-B1的平面角.
B1H=,C1H=,AC1=,HK=
tan∠B1KH=,
∴二面角A1-AC1-B1的大小为arctan.