满分5 > 高中数学试题 >

已知数列{an}中,a2=a+2(a为常数),Sn是{an}的前n项和,且Sn是...

已知数列{an}中,a2=a+2(a为常数),Sn是{an}的前n项和,且Sn是nan与na的等差中项.
(1)求数列{an}的通项公式;
(2)设数列{bn}是首项为1,公比为manfen5.com 满分网的等比数列,Tn是{bn}的前n项和,问是否存在常数a,使a10•Tn<12恒成立?若存在,求出a的取值范围;若不存在,说明理由.
(1)由Sn是nan与na的等差中项,我们易得2Sn=nan+na,进一步得到2Sn-1=nan-1+(n-1)a,由于关系式中即有Sn又有an故可根据an=Sn-Sn-1,将上述公式相减得到数列的递推公式,进一步求出数列的通项公式. (2)根据已知条件,不难写出数列{bn}的前n项和公式Tn,结合(1)的结论,可构造出一个关于a 的不等式,解不等式,可得满足条件的a的取值范围. 【解析】 (1)由已知得:2Sn=nan+na, 所以当n≥2时2Sn-1=(n-1)an-1+(n-1)a. 两式相减得:2an=nan-(n-1)an-1+a, 整理得:(n-1)an-1=(n-2)an+a. 当n≥3时,上式可化为: , 于是:. 又,2a1=a1+a⇒a1=a,a2=a+2均满足上式, 故an=2n+a-2(n∈N*) (2)因为, 所以. 又a10=a+18,所以a10•Tn<12 可化为, 整理得:. 令, 则当n为奇数时,; 当n为偶数时,. 所以,, 故. 故存在常数a,使a10•Tn<12恒成立, 其范围是(-∞,-6).
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax3+bx2+cx(a≠0)的定义域为R,它的图象关于原点对称,且当x=-1时,函数取极值1.
(1)求a,b,c的值;
(2)求证:曲线y=f(x)上不存在两个不同的点A、B,使过A、B两点的切线都垂直于直线AB.
查看答案
已知函数f(x)=2x-1的反函数为f-1(x),g(x)=log4(3x+1).
(1)若f-1(x)≤g(x),求x的取值范围P;
(2)设manfen5.com 满分网,当x∈P时,求函数h(x)的值域.
查看答案
已知△ABC中,manfen5.com 满分网,记manfen5.com 满分网
(1)求f(x)解析式及定义域;
(2)设g(x)=6m•f(x)+1,manfen5.com 满分网,是否存在正实数m,使函数g(x)的值域为manfen5.com 满分网?若存在,请求出m的值;若不存在,请说明理由.
查看答案
E、F是椭圆manfen5.com 满分网的左、右焦点,l是椭圆的准线,点P∈l,则∠EPF的最大值是    查看答案
已知偶函数f(x)在区间[0,+∞)上单调增加,则满足f(2x-1)<f(manfen5.com 满分网)的x取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.