满分5 > 高中数学试题 >

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,...

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Tn,且manfen5.com 满分网,求证:对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,总有Tn<2;
(3)正数数列{cn}中,an+1=(cnn+1(n∈N*),求数列{cn}中的最大项.
(1)根据an=Sn-Sn-1,整理得an-an-1=1进而可判断出数列{an}是公差为1的等差数列,根据等差数列的通项公式求得答案. (2)把(1)中求得的an代入求得的bn通项公式,利用裂项法可证明原式. (3)由的an代通项公式可分别求得c1,c2,c3,c4,猜想n≥2时,{cn}是递减数列令,进而进行求导,根据n≥3时,f′(x)<0,判断出在[3,+∞)内,f(x)为单调递减函数,n≥2时,{lncn}是递减数列,即{cn}是递减数列,同时c1<c2,进而可知数列的最大项为c2. 【解析】 (1)由已知,对于任意n∈N*,总有2Sn=an+an2①成立 所以2Sn-1=an-1+an-12② ①-②得,2an=an+an2-an-1-an-12, ∴an+an-1=(an+an-1)(an-an-1) ∵an,an-1均为正数, ∴an-an-1=1(n≥2) ∴数列{an}是公差为1的等差数列 又n=1时,2S1=a1+a12,解得a1=1∴an=n(n∈N*) (2)证明:∵对任意实数x∈(1,e](e是常数,e=2.71828)和任意正整数n, 总有, ∴= (3)由已知,, 易得c1<c2,c2>c3>c4> 猜想n≥2时,{cn}是递减数列 令 则, ∵当x≥3时,lnx>1,则1-lnx<0,f′(x)<0, ∴在[3,+∞)内,f(x)为单调递减函数, 由an+1=(cn)n+1(n∈N*),知 ∴n≥2时,{lncn}是递减数列,即{cn}是递减数列, 又c1<c2, ∴数列{cn}中的最大项为.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足|manfen5.com 满分网|=2a.点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足manfen5.com 满分网manfen5.com 满分网=0,|manfen5.com 满分网|≠0.
(Ⅰ)设x为点P的横坐标,证明|manfen5.com 满分网|=a+manfen5.com 满分网x;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△F1MF2的面积S=b2.若存在,求∠F1MF2的正切值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网在[1,+∞)上为增函数,且θ∈(0,π),manfen5.com 满分网,m∈R.
(1)求θ的值;
(2)若f(x)-g(x)在[1,+∞)上为单调函数,求m的取值范围;
(3)设manfen5.com 满分网,若在[1,e]上至少存在一个x,使得f(x)-g(x)>h(x)成立,求m的取值范围.
查看答案
如图1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=1,AD=CD,把△DAC沿对角线AC折起后如图2所示(点D记为点P),点P在平面ABC上的正投影E落在线段AB上,连接PB.
(1)求直线PC与平面PAB所成的角的大小;
(2)求二面角P-AC-B的大小的余弦值.

manfen5.com 满分网 查看答案
某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为manfen5.com 满分网manfen5.com 满分网,且各株大树是否成活互不影响.求移栽的4株大树中:
(1)两种大树各成活1株的概率;
(2)成活的株数ξ的分布列与期望.
查看答案
已知向量manfen5.com 满分网,设函数manfen5.com 满分网
(1)求f(x)的最小正周期与单调递减区间
(2)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为manfen5.com 满分网,求a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.