(1)根据同角三角函数的基本关系可得cosB的值,再由余弦函数的二倍角公式可得sinA和cosA的值,最后根据两角和的余弦公式可得答案.
(2)根据(1)可求出角C的值,进而得到角C的正弦值,再由正弦定理可求出abc的值.
【解析】
(1)∵A、B为锐角,sinB=,
∴cosB==.
又cos2A=1-2sin2A=,
∴sinA=,cosA==.
∴cos(A+B)=cosAcosB-sinAsinB=×-×=.
∵0<A+B<π,∴A+B=.
(2)由(1)知C=,∴sinC=.
由正弦定理==得
a=b=c,即a=b,c=b.
∵a-b=-1,∴b-b=-1,∴b=1.
∴a=,c=.