满分5 > 高中数学试题 >

在△ABC中,A、B为锐角,角A、B、C所对的边分别为a、b、c,且cos2A=...

在△ABC中,A、B为锐角,角A、B、C所对的边分别为a、b、c,且cos2A=manfen5.com 满分网,sinB=manfen5.com 满分网
(1)求A+B的值;
(2)若a-b=manfen5.com 满分网-1,求a、b、c的值.
(1)根据同角三角函数的基本关系可得cosB的值,再由余弦函数的二倍角公式可得sinA和cosA的值,最后根据两角和的余弦公式可得答案. (2)根据(1)可求出角C的值,进而得到角C的正弦值,再由正弦定理可求出abc的值. 【解析】 (1)∵A、B为锐角,sinB=, ∴cosB==. 又cos2A=1-2sin2A=, ∴sinA=,cosA==. ∴cos(A+B)=cosAcosB-sinAsinB=×-×=. ∵0<A+B<π,∴A+B=. (2)由(1)知C=,∴sinC=. 由正弦定理==得 a=b=c,即a=b,c=b. ∵a-b=-1,∴b-b=-1,∴b=1. ∴a=,c=.
复制答案
考点分析:
相关试题推荐
在△ABC中,A、B、C为三角形的三个内角,且满足条件sin(C-A)=1,manfen5.com 满分网
(Ⅰ)求sinA的值;
(Ⅱ)若manfen5.com 满分网,求△ABC的面积.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网互相垂直,其中manfen5.com 满分网
(1)求sinθ和cosθ的值;
(2)若manfen5.com 满分网,求cosφ的值.
查看答案
设向量manfen5.com 满分网
(1)若manfen5.com 满分网manfen5.com 满分网垂直,求tan(α+β)的值;
(2)求manfen5.com 满分网的最大值;
(3)若tanαtanβ=16,求证:manfen5.com 满分网manfen5.com 满分网
查看答案
已知函数f(x)=f′(manfen5.com 满分网)cosx+sinx,则f(manfen5.com 满分网)的值为    查看答案
若sinθ=-manfen5.com 满分网,tanθ>0,则cosθ=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.