满分5 > 高中数学试题 >

已知圆锥曲线是参数)和定点,F1、F2是圆锥曲线的左、右焦点. (1)求经过点F...

已知圆锥曲线manfen5.com 满分网是参数)和定点manfen5.com 满分网,F1、F2是圆锥曲线的左、右焦点.
(1)求经过点F2且垂直地于直线AF1的直线l的参数方程;
(2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AF2的极坐标方程.
(1)先利用三角函数中的平方关系消去参数θ即可将圆锥曲线化为普通方程,从而求出其焦点坐标,再利用直线的斜率求得直线l的倾斜角,最后利用直线的参数方程形式即得. (2)设P(ρ,θ)是直线AF2上任一点,利用正弦定理列出关于ρ,θ的关系式,化简即得直线AF2的极坐标方程. 【解析】 (1)圆锥曲线化为普通方程, 所以F1(-1,0),F2(1,0),则直线AF1的斜率, 于是经过点F2垂直于直线AF1的直线l的斜率,直线l的倾斜角是120°, 所以直线l的参数方程是(t为参数), 即(t为参数).(6分) (2)直线AF2的斜率,倾斜角是150°, 设P(ρ,θ)是直线AF2上任一点, 则,ρsin(150°-θ)=sin30°,(8分) 所以直线AF2的极坐标方程:(10分)
复制答案
考点分析:
相关试题推荐
如图,⊙O1和⊙O2公切线AD和BC相交于点D,A、B、C为切点,直线DO1与⊙O1与E、G两点,直线DO2交⊙O2与F、H两点.
(1)求证:△DEF~△DHG;
(2)若⊙O1和⊙O2的半径之比为9:16,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
已知函数f(x)=manfen5.com 满分网x2+2ax,g(x)=3a2lnx+b.其中a,b∈R.
(1)设两曲线y=f(x)与y=g(x)有公共点,且在公共点处的切线相同,若a>0,试建立b关于a的函数关系式;
(2)在(1)的条件下求b的最大值;
(3)若b=0时,函数h(x)=f(x)+g(x)-(2a+6)x在(0,4)上为单调函数,求a的取值范围.
查看答案
已知定点C(-1,0)及椭圆x2+3y2=5,过点C的动直线与椭圆相交于A,B两点.
(Ⅰ)若线段AB中点的横坐标是manfen5.com 满分网,求直线AB的方程;
(Ⅱ)在x轴上是否存在点M,使manfen5.com 满分网为常数?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案
manfen5.com 满分网如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求证:DM∥平面PCB.
查看答案
已知向量m=(manfen5.com 满分网manfen5.com 满分网),n=(manfen5.com 满分网manfen5.com 满分网),记f(x)=m•n;
(1)若f(x)=1,求manfen5.com 满分网的值;
(2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函
数f(A)的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.