满分5 > 高中数学试题 >

设椭圆的离心率,右焦点到直线的距离,O为坐标原点. (I)求椭圆C的方程; (I...

设椭圆manfen5.com 满分网的离心率manfen5.com 满分网,右焦点到直线manfen5.com 满分网的距离manfen5.com 满分网,O为坐标原点.
(I)求椭圆C的方程;
(II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.
(I)利用离心率求得a和c的关系式,同时利用点到直线的距离求得a,b和c的关系最后联立才求得a和b,则椭圆的方程可得. (II)设出A,B和直线AB的方程与椭圆方程联立消去y,利用韦达定理表示出x1+x2和x1x2,利用OA⊥OB推断出x1x2+y1y2=0, 求得m和k的关系式,进而利用点到直线的距离求得O到直线AB的距离为定值,进而利用基本不等式求得OA=OB时AB长度最小,最后根据求得AB的坐标值. 【解析】 (I)由,∴. 由右焦点到直线的距离为, 得:, 解得. 所以椭圆C的方程为. (II)设A(x1,y1),B(x2,y2), 直线AB的方程为y=kx+m, 与椭圆联立消去y得3x2+4(k2x2+2kmx+m2)-12=0,. ∵OA⊥OB,∴x1x2+y1y2=0, ∴x1x2+(kx1+m)(kx2+m)=0. 即(k2+1)x1x2+km(x1+x2)+m2=0,∴, 整理得7m2=12(k2+1) 所以O到直线AB的距离.为定值 ∵OA⊥OB,∴OA2+OB2=AB2≥2OA•OB, 当且仅当OA=OB时取“=”号. 由, ∴, 即弦AB的长度的最小值是.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,P为A1C1的中点,AB=BC=kPA.
(I)当k=1时,求证PA⊥B1C;
(II)当k为何值时,直线PA与平面BB1C1C所成的角的正弦值为manfen5.com 满分网,并求此时二面角A-PC-B的余弦值.
查看答案
在△ABC中,点M是BC的中点,△AMC的三边长是连续三个正整数,且tan∠C=cot∠BAM.
(I)判断△ABC的形状;
(II)求∠BAC的余弦值.
查看答案
某选手进行n次射击训练,每次击中目标的概率为P,且每次击中目标与否是相互独立的,X记为击中目标的次数,若随机变量X的数学期望EX=3,方差manfen5.com 满分网
(I)求n,P的值;
(II)若这n次射击有3次或3次以上未击中目标,则需继续训练,求该选手需要继续训练的概率.
查看答案
已知函数f(x)=ex-1,直线l1:x=1,l2:y=et-1(t为常数,且0≤t≤1),直线l1,l2与函数f(x)的图象围成的封闭图形,以及直线l2,y轴与函数f(x)的图象围成的封闭图形如图中阴影所示.当t变化时阴影部分的面积的最小值为   
manfen5.com 满分网 查看答案
抛掷红、蓝两颗均匀的骰子,已知点数不同,则红色骰子的点数比蓝色骰子的点数恰好多两点的概率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.