设椭圆
的离心率
,右焦点到直线
的距离
,O为坐标原点.
(I)求椭圆C的方程;
(II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.
考点分析:
相关试题推荐
如图,在直三棱柱ABC-A
1B
1C
1中,AB⊥BC,P为A
1C
1的中点,AB=BC=kPA.
(I)当k=1时,求证PA⊥B
1C;
(II)当k为何值时,直线PA与平面BB
1C
1C所成的角的正弦值为
,并求此时二面角A-PC-B的余弦值.
查看答案
在△ABC中,点M是BC的中点,△AMC的三边长是连续三个正整数,且tan∠C=cot∠BAM.
(I)判断△ABC的形状;
(II)求∠BAC的余弦值.
查看答案
某选手进行n次射击训练,每次击中目标的概率为P,且每次击中目标与否是相互独立的,X记为击中目标的次数,若随机变量X的数学期望EX=3,方差
(I)求n,P的值;
(II)若这n次射击有3次或3次以上未击中目标,则需继续训练,求该选手需要继续训练的概率.
查看答案
已知函数f(x)=e
x-1,直线l
1:x=1,l
2:y=e
t-1(t为常数,且0≤t≤1),直线l
1,l
2与函数f(x)的图象围成的封闭图形,以及直线l
2,y轴与函数f(x)的图象围成的封闭图形如图中阴影所示.当t变化时阴影部分的面积的最小值为
.
查看答案
抛掷红、蓝两颗均匀的骰子,已知点数不同,则红色骰子的点数比蓝色骰子的点数恰好多两点的概率为
.
查看答案