如图,已知直线l:x=my+1过椭圆
的右焦点F,抛物线:
的焦点为椭圆C的上顶点,且直线l交椭圆C于A、B两点,点A、F、B在直线g:x=4上的射影依次为点D、K、E.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l交y轴于点M,且
,当m变化时,探求λ
1+λ
2的值是否为定值?若是,求出λ
1+λ
2的值,否则,说明理由;
(Ⅲ)连接AE、BD,试证明当m变化时,直线AE与BD相交于定点
.
考点分析:
相关试题推荐
已知直线l与函数f(x)=lnx的图象相切于点(1,0),且l与函数
(m<0)的图象也相切.
(Ⅰ)求直线l的方程及m的值;
(Ⅱ)若h(x)=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数),求函数h(x)的最大值;
(Ⅲ)当0<a<1时,求证:
.
查看答案
已知二次函数f(x)=x
2-ax+a(a>0,x∈R)有且只有一个零点,数列{a
n}的前n项和S
n=f(n)(n∈N
*).
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)设
,定义所有满足c
m•c
m+1<0的正整数m的个数,称为这个数列{c
n}的变号数,求数列{c
n}的变号数.
查看答案
如图,在直三棱柱ABC-A
1B
1C
1中,∠ACB=90°,AA
1=BC=2AC=2.
(Ⅰ)若D为AA
1中点,求证:平面B
1CD⊥平面B
1C
1D;
(Ⅱ)在AA
1上是否存在一点D,使得二面角B
1-CD-C
1的大小为60°.
查看答案
为了让更多的人参与2010年在上海举办的“世博会”,上海某旅游公司面向国内外发行总量为2000万张的旅游优惠卡,其中向境外人士发行的是世博金卡(简称金卡),向境内人士发行的是世博银卡(简称银卡).现有一个由36名游客组成的旅游团到上海参观旅游,其中
是境外游客,其余是境内游客.在境外游客中有
持金卡,在境内游客中有
持银卡.
(I)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;
(II)在该团的境内游客中随机采访3名游客,设其中持银卡人数为随机变量ξ,求ξ的分布列及数学期望Eξ.
查看答案
已知
,
,其中ω>0,若函数
,且函数f(x)的图象与直线y=2相邻两公共点间的距离为π.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,a、b、c分别是角A、B、C、的对边,且
,f(A)=1,求△ABC的面积.
查看答案